AIGC 013-CoT用思维链挖掘自回归语言模型的潜在能力

AIGC 013-CoT用思维链挖掘自回归语言模型的潜在能力


文章目录

    • [0 论文工作](#0 论文工作)
    • [1 论文方法](#1 论文方法)
    • [2 实验结果](#2 实验结果)

0 论文工作

纯自回归式语言模型,本来并不具备优秀推理能力,特别是在数学问题的推理。但是现在的生成模型是能实现一些数学的推理的。研究者认为当模型足够大他实际上能学习到很多潜在能力,如何让能力得以涌现也是一个重要问题。

思维链就是这方面的工作,研究如何去挖掘他的潜能。CoT(Chain of thought),思维链,通俗说就是激发LLM像人类一样有一个"思考"前摇动作来回答一些复杂性问题,这样能帮助模型有引导性提升推理能力。

这篇论文探索了生成思维链------一系列中间推理步骤------如何显著提高大型语言模型执行复杂推理的能力。特别是,展示了这种推理能力如何通过一种简单的方法,称为思维链提示,在足够大的语言模型中自然地涌现,其中一些思维链演示作为提示中的示例提供。对三个大型语言模型的实验表明,思维链提示提高了模型在算术、常识和符号推理任务上的性能。实证增益可能非常显著。

在我的记忆中这个论文是我了解到的最早期的思维链论文,后面的对话模型等训练中都会使用思维链的思想。
paper

1 论文方法

这篇论文的核心工作是提出了一种名为"链式思考提示"(Chain-of-Thought Prompting)的方法 ,旨在提升大型语言模型在复杂推理任务中的表现。具体来说,该方法通过在提示中加入一系列中间推理步骤的示例,引导模型逐步进行推理,最终得出答案。
提出链式思考提示方法: 该方法的核心思想是,在给语言模型提供少量的示例时,不仅展示输入和输出,还加入中间的推理步骤(即思维链),让模型学习如何分解问题并逐步推理。
实验验证 : 作者在三个大型语言模型(包括PaLM)上,对算术、常识和符号推理等多种任务进行了实验,结果表明,链式思考提示方法在这些任务上都能显著提升模型的性能,尤其是那些需要多步骤推理的复杂任务。
深入分析: 论文还通过人工分析模型生成的推理链,研究了该方法起作用的原因,以及模型在推理过程中出现的错误类型,并发现随着模型规模的增大,链式思考提示的效果会更显著

鲁棒性分析: 论文还探讨了链式思考提示方法在不同标注者、不同示例、不同示例顺序和不同语言模型上的鲁棒性,结果表明,该方法在多种情况下都表现出较好的效果。

2 实验结果

有效的引导,帮助模型思考。

相关推荐
koo36433 分钟前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波1 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客1 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室1 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭1 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
牛客企业服务1 小时前
企业招聘新趋势:「AI面试」如何破解在线作弊难题?
人工智能·面试·职场和发展·招聘·ai招聘
infominer1 小时前
数据处理像搭乐高?详解 RAGFlow Ingestion Pipeline
人工智能·ai-native
wudl55662 小时前
华工科技(000988)2025年4月22日—10月22日
大数据·人工智能·科技
世强硬创小助手2 小时前
世强硬创平台上新:天钰科技高集成AI SoC,助力客户解锁轻量智能家居新方案
人工智能·科技·智能家居
Tencent_TCB2 小时前
Gemini CLI接入CloudBase-AI-Toolkit(MCP)保姆级教程
人工智能·ai·ai编程·云开发