机器学习环境

如果没有指定 Python 版本,通常建议使用 Python 的最新稳定版本,因为它通常会包含最新的功能和安全修复。对于大多数库来说,Python 3.8、3.9 和 3.10 都是广泛支持的版本。以下是考虑到兼容性和稳定性的改进后的环境配置:

  1. 指定 Python 版本

    • 选择一个广泛支持的 Python 版本,例如 Python 3.8,因为它提供了良好的兼容性和性能。
  2. 更新库版本

    • 更新 pandasnumpy 到最新的稳定版本,以确保兼容性和利用最新功能。
  3. 移除重复和错误的版本声明

    • 移除 transformers 版本声明中的重复等号。

以下是改进后的库版本列表:

plaintext 复制代码
python==3.8.10  # 指定 Python 版本为 3.8.10
torch==2.3.1
torchvision==0.18.1
pandas==1.4.3  # 更新到最新的稳定版本
numpy==1.24.0  # 更新到最新的稳定版本
datasets==1.18.3  # 更新到最新的稳定版本
scikit-learn==1.0.2  # 更新到最新的稳定版本
transformers==4.42.4  # 确保版本声明正确
peft  # 如果是必需的库,需要指定版本
vllm==0.5.3
modelscope  # 如果是必需的库,需要指定版本
accelerate==0.26.0

创建和管理环境的步骤:

  1. 创建环境

    bash 复制代码
    conda create --name my_ml_env python=3.8.10
  2. 安装依赖

    bash 复制代码
    conda install -n my_ml_env torch==2.3.1 torchvision==0.18.1 pandas==1.4.3 numpy==1.24.0 scikit-learn==1.0.2 datasets==1.18.3 transformers==4.42.4 peft vllm==0.5.3 modelscope accelerate==0.26.0

    注意:如果 peftmodelscope 需要特定版本,请替换为具体的版本号。

  3. 激活环境

    bash 复制代码
    conda activate my_ml_env
  4. 验证环境

    在环境中,你可以使用以下命令来验证每个库的版本:

    bash 复制代码
    python -c "import pandas; print(pandas.__version__)"
    python -c "import numpy; print(numpy.__version__)"
    python -c "import torch; print(torch.__version__)"
    # 以此类推,对其他库进行验证

通过这些步骤,你可以确保你的机器学习环境使用的是兼容的库版本,并且环境是隔离的,这有助于避免不同项目之间的依赖冲突。如果你在安装过程中遇到任何问题,可以检查每个库的官方文档以获取兼容性信息。

相关推荐
tq10863 小时前
AI 时代的3类程序员
人工智能
island13143 小时前
CANN ops-nn 算子库深度解析:核心算子(如激活函数、归一化)的数值精度控制与内存高效实现
开发语言·人工智能·神经网络
骥龙4 小时前
第六篇:AI平台篇 - 从Jupyter Notebook到生产级模型服务
ide·人工智能·jupyter
TOPGUS4 小时前
谷歌SEO第三季度点击率趋势:榜首统治力的衰退与流量的去中心化趋势
大数据·人工智能·搜索引擎·去中心化·区块链·seo·数字营销
松☆4 小时前
CANN深度解析:构建高效AI推理引擎的软件基
人工智能
ujainu4 小时前
CANN仓库中的AIGC可持续演进工程:昇腾AI软件栈如何构建“活”的开源生态
人工智能·开源·aigc
光锥智能4 小时前
从连接机器到激活知识:探寻工业互联网深水区的山钢范式
人工智能
GHL2842710904 小时前
分析式AI学习
人工智能·学习·ai编程
ujainu4 小时前
CANN仓库中的AIGC性能极限挑战:昇腾软件栈如何榨干每一瓦算力
人工智能·开源
wenzhangli74 小时前
ooderA2UI BridgeCode 深度解析:从设计原理到 Trae Solo Skill 实践
java·开发语言·人工智能·开源