机器学习环境

如果没有指定 Python 版本,通常建议使用 Python 的最新稳定版本,因为它通常会包含最新的功能和安全修复。对于大多数库来说,Python 3.8、3.9 和 3.10 都是广泛支持的版本。以下是考虑到兼容性和稳定性的改进后的环境配置:

  1. 指定 Python 版本

    • 选择一个广泛支持的 Python 版本,例如 Python 3.8,因为它提供了良好的兼容性和性能。
  2. 更新库版本

    • 更新 pandasnumpy 到最新的稳定版本,以确保兼容性和利用最新功能。
  3. 移除重复和错误的版本声明

    • 移除 transformers 版本声明中的重复等号。

以下是改进后的库版本列表:

plaintext 复制代码
python==3.8.10  # 指定 Python 版本为 3.8.10
torch==2.3.1
torchvision==0.18.1
pandas==1.4.3  # 更新到最新的稳定版本
numpy==1.24.0  # 更新到最新的稳定版本
datasets==1.18.3  # 更新到最新的稳定版本
scikit-learn==1.0.2  # 更新到最新的稳定版本
transformers==4.42.4  # 确保版本声明正确
peft  # 如果是必需的库,需要指定版本
vllm==0.5.3
modelscope  # 如果是必需的库,需要指定版本
accelerate==0.26.0

创建和管理环境的步骤:

  1. 创建环境

    bash 复制代码
    conda create --name my_ml_env python=3.8.10
  2. 安装依赖

    bash 复制代码
    conda install -n my_ml_env torch==2.3.1 torchvision==0.18.1 pandas==1.4.3 numpy==1.24.0 scikit-learn==1.0.2 datasets==1.18.3 transformers==4.42.4 peft vllm==0.5.3 modelscope accelerate==0.26.0

    注意:如果 peftmodelscope 需要特定版本,请替换为具体的版本号。

  3. 激活环境

    bash 复制代码
    conda activate my_ml_env
  4. 验证环境

    在环境中,你可以使用以下命令来验证每个库的版本:

    bash 复制代码
    python -c "import pandas; print(pandas.__version__)"
    python -c "import numpy; print(numpy.__version__)"
    python -c "import torch; print(torch.__version__)"
    # 以此类推,对其他库进行验证

通过这些步骤,你可以确保你的机器学习环境使用的是兼容的库版本,并且环境是隔离的,这有助于避免不同项目之间的依赖冲突。如果你在安装过程中遇到任何问题,可以检查每个库的官方文档以获取兼容性信息。

相关推荐
人机与认知实验室34 分钟前
生物神经网络与人工神经网络都有自组织临界
人工智能·深度学习·神经网络·机器学习
微臣愚钝1 小时前
【实验16】基于双向LSTM模型完成文本分类任务
人工智能·rnn·lstm
Funny_AI_LAB1 小时前
超越DFINE最新目标检测SOTA模型DEIM
人工智能·目标检测·计算机视觉·目标跟踪
小众AI1 小时前
supervision - 好用的计算机视觉 AI 工具库
人工智能·计算机视觉
WeeJot嵌入式1 小时前
深度学习中的多通道卷积与偏置过程详解
人工智能·深度学习
独泪了无痕2 小时前
【IntelliJ IDEA 集成工具】TalkX - AI编程助手
人工智能·个人开发·intellij idea
lshzdq2 小时前
【机器人】控制之稳定性判定: 李雅普诺夫Lyapunov (7) 判定是否是李函数,思维导图
线性代数·算法·机器学习
z千鑫2 小时前
【人工智能】ChatGPT 4的潜力:AI文案、绘画、视频与GPTs平台详解
人工智能·chatgpt·音视频
小熊科研路(同名GZH)2 小时前
【电力负荷预测实例】采用新英格兰2024年最新电力负荷数据的BPNN神经网络电力负荷预测模型
人工智能·神经网络·机器学习
安全方案2 小时前
免费下载 | 2024算网融合技术与产业白皮书
人工智能