机器学习环境

如果没有指定 Python 版本,通常建议使用 Python 的最新稳定版本,因为它通常会包含最新的功能和安全修复。对于大多数库来说,Python 3.8、3.9 和 3.10 都是广泛支持的版本。以下是考虑到兼容性和稳定性的改进后的环境配置:

  1. 指定 Python 版本

    • 选择一个广泛支持的 Python 版本,例如 Python 3.8,因为它提供了良好的兼容性和性能。
  2. 更新库版本

    • 更新 pandasnumpy 到最新的稳定版本,以确保兼容性和利用最新功能。
  3. 移除重复和错误的版本声明

    • 移除 transformers 版本声明中的重复等号。

以下是改进后的库版本列表:

plaintext 复制代码
python==3.8.10  # 指定 Python 版本为 3.8.10
torch==2.3.1
torchvision==0.18.1
pandas==1.4.3  # 更新到最新的稳定版本
numpy==1.24.0  # 更新到最新的稳定版本
datasets==1.18.3  # 更新到最新的稳定版本
scikit-learn==1.0.2  # 更新到最新的稳定版本
transformers==4.42.4  # 确保版本声明正确
peft  # 如果是必需的库,需要指定版本
vllm==0.5.3
modelscope  # 如果是必需的库,需要指定版本
accelerate==0.26.0

创建和管理环境的步骤:

  1. 创建环境

    bash 复制代码
    conda create --name my_ml_env python=3.8.10
  2. 安装依赖

    bash 复制代码
    conda install -n my_ml_env torch==2.3.1 torchvision==0.18.1 pandas==1.4.3 numpy==1.24.0 scikit-learn==1.0.2 datasets==1.18.3 transformers==4.42.4 peft vllm==0.5.3 modelscope accelerate==0.26.0

    注意:如果 peftmodelscope 需要特定版本,请替换为具体的版本号。

  3. 激活环境

    bash 复制代码
    conda activate my_ml_env
  4. 验证环境

    在环境中,你可以使用以下命令来验证每个库的版本:

    bash 复制代码
    python -c "import pandas; print(pandas.__version__)"
    python -c "import numpy; print(numpy.__version__)"
    python -c "import torch; print(torch.__version__)"
    # 以此类推,对其他库进行验证

通过这些步骤,你可以确保你的机器学习环境使用的是兼容的库版本,并且环境是隔离的,这有助于避免不同项目之间的依赖冲突。如果你在安装过程中遇到任何问题,可以检查每个库的官方文档以获取兼容性信息。

相关推荐
Das119 分钟前
【机器学习】01_模型选择与评估
人工智能·算法·机器学习
墨染天姬25 分钟前
【AI】AI时代,模组厂商如何建立自己的AI护城河?
人工智能
aigcapi31 分钟前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
字节跳动开源34 分钟前
Midscene v1.0 发布 - 视觉驱动,UI 自动化体验跃迁
前端·人工智能·客户端
+wacyltd大模型备案算法备案1 小时前
大模型备案怎么做?2025年企业大模型备案全流程与材料清单详解
人工智能·大模型备案·算法备案·大模型上线登记
吾在学习路1 小时前
故事型总结:Swin Transformer 是如何打破 Vision Transformer 壁垒的?
人工智能·深度学习·transformer
sandwu2 小时前
AI自动化测试(一)
人工智能·agent·playwright·ai自动化测试·midscene
问道飞鱼2 小时前
【人工智能】AI Agent 详解:定义、分类与典型案例
人工智能·ai agent
囊中之锥.2 小时前
《机器学习SVM从零到精通:图解最优超平面与软间隔实战》
算法·机器学习·支持向量机
光羽隹衡2 小时前
集成学习之随机森林
随机森林·机器学习·集成学习