supervision - 好用的计算机视觉 AI 工具库

Supervision库是一款出色的Python计算机视觉低代码工具,其设计初衷在于为用户提供一个便捷且高效的接口,用以处理数据集以及直观地展示检测结果。简化了对象检测、分类、标注、跟踪等计算机视觉的开发流程。开发者仅需加载数据集和模型,就能轻松实现对图像和视频进行检测、统计某区域的被检测数量等操作。

18400 Stars 1400 Forks 56 Issues 77 贡献者 MIT License Python语言

代码: https://github.com/roboflow/supervision

主页: Redirecting

主要功能

  • 不同任务的处理: 目标检测与语义分割、目标跟踪、图像分类
  • 数据展示与辅助处理: 颜色设置、识别结果可视化示例、辅助函数
  • 面向实际任务的工具: 越线数量统计、对特定区域进行检测跟踪、切片推理、轨迹平滑

快速开始

模型

Supervision被设计为与模型无关。只需插入任何分类、检测或分割模型。为了方便您,我们已经为最流行的库(如Ultralytics、Transformers库或MMDetection)创建了连接器

复制代码
import cv2
import supervision as sv
from ultralytics import YOLO

image = cv2.imread(...)
model = YOLO('yolov8s.pt')
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)

len(detections)
# 5
标注

Supervision 提供了一系列高度可定制的标注功能,让您可以为您的用例构建完美的可视化效果。

复制代码
import cv2
import supervision as sv

image = cv2.imread(...)
detections = sv.Detections(...)

box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(
    scene=image.copy(),
    detections=detections
)

https://github.com/roboflow/supervision/assets/26109316/691e219c-0565-4403-9218-ab5644f39bce

数据集

Supervision 提供了一套实用工具,允许您以支持的格式之一加载、分割、合并和保存数据集。

复制代码
import supervision as sv
from roboflow import Roboflow

project = Roboflow().workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)
dataset = project.version(<PROJECT_VERSION>).download("coco")

ds = sv.DetectionDataset.from_coco(
    images_directory_path=f"{dataset.location}/train",
    annotations_path=f"{dataset.location}/train/_annotations.coco.json",
)

path, image, annotation = ds[0]
    # loads image on demand

for path, image, annotation in ds:
    # loads image on demand
相关推荐
Echo_NGC22372 分钟前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率
纤纡.12 分钟前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派14 分钟前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追14 分钟前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能
2601_9495936519 分钟前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能
●VON21 分钟前
CANN安全与隐私:从模型加固到数据合规的全栈防护实战
人工智能·安全
刘大大Leo28 分钟前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人30 分钟前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程38 分钟前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn
程序员清洒1 小时前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全