supervision - 好用的计算机视觉 AI 工具库

Supervision库是一款出色的Python计算机视觉低代码工具,其设计初衷在于为用户提供一个便捷且高效的接口,用以处理数据集以及直观地展示检测结果。简化了对象检测、分类、标注、跟踪等计算机视觉的开发流程。开发者仅需加载数据集和模型,就能轻松实现对图像和视频进行检测、统计某区域的被检测数量等操作。

18400 Stars 1400 Forks 56 Issues 77 贡献者 MIT License Python语言

代码: https://github.com/roboflow/supervision

主页: Redirecting

主要功能

  • 不同任务的处理: 目标检测与语义分割、目标跟踪、图像分类
  • 数据展示与辅助处理: 颜色设置、识别结果可视化示例、辅助函数
  • 面向实际任务的工具: 越线数量统计、对特定区域进行检测跟踪、切片推理、轨迹平滑

快速开始

模型

Supervision被设计为与模型无关。只需插入任何分类、检测或分割模型。为了方便您,我们已经为最流行的库(如Ultralytics、Transformers库或MMDetection)创建了连接器

复制代码
import cv2
import supervision as sv
from ultralytics import YOLO

image = cv2.imread(...)
model = YOLO('yolov8s.pt')
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)

len(detections)
# 5
标注

Supervision 提供了一系列高度可定制的标注功能,让您可以为您的用例构建完美的可视化效果。

复制代码
import cv2
import supervision as sv

image = cv2.imread(...)
detections = sv.Detections(...)

box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(
    scene=image.copy(),
    detections=detections
)

https://github.com/roboflow/supervision/assets/26109316/691e219c-0565-4403-9218-ab5644f39bce

数据集

Supervision 提供了一套实用工具,允许您以支持的格式之一加载、分割、合并和保存数据集。

复制代码
import supervision as sv
from roboflow import Roboflow

project = Roboflow().workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)
dataset = project.version(<PROJECT_VERSION>).download("coco")

ds = sv.DetectionDataset.from_coco(
    images_directory_path=f"{dataset.location}/train",
    annotations_path=f"{dataset.location}/train/_annotations.coco.json",
)

path, image, annotation = ds[0]
    # loads image on demand

for path, image, annotation in ds:
    # loads image on demand
相关推荐
2501_941623321 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛1 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI2 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus2 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声2 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API2 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者2 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者2 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy
YangYang9YangYan2 小时前
网络安全专业职业能力认证发展路径指南
大数据·人工智能·安全·web安全
aitoolhub2 小时前
精选AI设计工具测评:创新性、易用性及行业应用
人工智能·在线设计