Pytorch中的CrossEntropyLoss

CrossEntropyLoss 的输入要求

在 PyTorch 中,CrossEntropyLoss 有以下要求:

  1. 预测值(logits) 的形状为 (N, C, ...),其中:

• N 是样本数(或批次大小)。

• C 是类别数。

• ... 是额外的维度(例如序列长度、图像的高度和宽度等)。

  1. 标签(targets) 的形状为 (N, ...),表示每个样本对应的分类标签。标签是整数索引,范围为 [0, C-1]。

其中重点为:PyTorch 的 CrossEntropyLoss要求输入张量的第二个维度必须是类别的个数,无论是 1D 数据、序列数据还是高维数据,这个要求都是一致的。第二维度始终对应分类任务中的类别数 (num_classes),这是 CrossEntropyLoss 的固定设计。

为什么第二维度必须是类别数?

CrossEntropyLoss 的计算方式基于每个样本的预测概率分布和真实类别标签:

  1. 对于每个样本或位置,CrossEntropyLoss 期望提供一个类别分布的 logits(未经过 softmax 的分值),这个分布存储在输入张量的第二维度。

  2. 损失函数会沿着第二维度(类别维度)计算每个样本的交叉熵损失。

换句话说,第二维度的每个值代表每个类别的 logits,这些 logits 会通过内部的 log_softmax 转换成对数概率,用于交叉熵计算。

相关推荐
程序员杰哥14 小时前
Python自动化测试之线上流量回放:录制、打标、压测与平台选择
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·压力测试
吴佳浩14 小时前
LangChain v1 重大更新讲解⚠⚠⚠
python·langchain·agent
模型启动机15 小时前
黄仁勋GTC开场:「AI-XR Scientist」来了!
人工智能·ai·大模型
k***19515 小时前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Techblog of HaoWANG16 小时前
目标检测与跟踪 (4)- 基于YOLOv8的工业仪器仪表智能读数与状态检测算法实
人工智能·视觉检测·智能制造·yolov8·工业检测·指针式仪表·仪器仪表检测
1***Q78416 小时前
深度学习技术
人工智能·深度学习
KKKlucifer16 小时前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全16 小时前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖16 小时前
这个Q3,百度开始AI
人工智能·百度
Leinwin16 小时前
微软与Anthropic深化战略合作,在Azure Foundry平台部署Claude系列AI模型
人工智能·microsoft·azure