Pytorch中的CrossEntropyLoss

CrossEntropyLoss 的输入要求

在 PyTorch 中,CrossEntropyLoss 有以下要求:

  1. 预测值(logits) 的形状为 (N, C, ...),其中:

• N 是样本数(或批次大小)。

• C 是类别数。

• ... 是额外的维度(例如序列长度、图像的高度和宽度等)。

  1. 标签(targets) 的形状为 (N, ...),表示每个样本对应的分类标签。标签是整数索引,范围为 [0, C-1]。

其中重点为:PyTorch 的 CrossEntropyLoss要求输入张量的第二个维度必须是类别的个数,无论是 1D 数据、序列数据还是高维数据,这个要求都是一致的。第二维度始终对应分类任务中的类别数 (num_classes),这是 CrossEntropyLoss 的固定设计。

为什么第二维度必须是类别数?

CrossEntropyLoss 的计算方式基于每个样本的预测概率分布和真实类别标签:

  1. 对于每个样本或位置,CrossEntropyLoss 期望提供一个类别分布的 logits(未经过 softmax 的分值),这个分布存储在输入张量的第二维度。

  2. 损失函数会沿着第二维度(类别维度)计算每个样本的交叉熵损失。

换句话说,第二维度的每个值代表每个类别的 logits,这些 logits 会通过内部的 log_softmax 转换成对数概率,用于交叉熵计算。

相关推荐
编码小哥9 分钟前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念17 分钟前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路1 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen1 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗1 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
hele_two2 小时前
快速幂算法
c++·python·算法
KG_LLM图谱增强大模型2 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
l1t2 小时前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独
JicasdC123asd3 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白3 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法