Pytorch中的CrossEntropyLoss

CrossEntropyLoss 的输入要求

在 PyTorch 中,CrossEntropyLoss 有以下要求:

  1. 预测值(logits) 的形状为 (N, C, ...),其中:

• N 是样本数(或批次大小)。

• C 是类别数。

• ... 是额外的维度(例如序列长度、图像的高度和宽度等)。

  1. 标签(targets) 的形状为 (N, ...),表示每个样本对应的分类标签。标签是整数索引,范围为 [0, C-1]。

其中重点为:PyTorch 的 CrossEntropyLoss要求输入张量的第二个维度必须是类别的个数,无论是 1D 数据、序列数据还是高维数据,这个要求都是一致的。第二维度始终对应分类任务中的类别数 (num_classes),这是 CrossEntropyLoss 的固定设计。

为什么第二维度必须是类别数?

CrossEntropyLoss 的计算方式基于每个样本的预测概率分布和真实类别标签:

  1. 对于每个样本或位置,CrossEntropyLoss 期望提供一个类别分布的 logits(未经过 softmax 的分值),这个分布存储在输入张量的第二维度。

  2. 损失函数会沿着第二维度(类别维度)计算每个样本的交叉熵损失。

换句话说,第二维度的每个值代表每个类别的 logits,这些 logits 会通过内部的 log_softmax 转换成对数概率,用于交叉熵计算。

相关推荐
少废话h2 小时前
解决Flink中ApacheCommonsCLI版本冲突
开发语言·python·pycharm
serve the people2 小时前
TensorFlow 图执行(tf.function)的 “非严格执行(Non-strict Execution)” 特性
人工智能·python·tensorflow
天命码喽c2 小时前
GraphRAG-2.7.0整合Milvus-2.5.1
开发语言·python·milvus·graphrag
泰迪智能科技2 小时前
图书推荐分享 | 堪称教材天花板,深度学习教材-TensorFlow 2 深度学习实战(第2版)(微课版)
人工智能·深度学习·tensorflow
吴佳浩4 小时前
LangChain 深入
人工智能·python·langchain
网安-轩逸7 小时前
回归测试原则:确保软件质量的基石
自动化测试·软件测试·python
Mr_Xuhhh7 小时前
YAML相关
开发语言·python
LplLpl117 小时前
AI 算法竞赛通关指南:基于深度学习的图像分类模型优化实战
大数据·人工智能·机器学习
咖啡の猫7 小时前
Python中的变量与数据类型
开发语言·python
依米s7 小时前
各年度人工智能大会WAIC核心议题(持续更新)
人工智能·人工智能+·waic·人工智能大会+