Pytorch中的CrossEntropyLoss

CrossEntropyLoss 的输入要求

在 PyTorch 中,CrossEntropyLoss 有以下要求:

  1. 预测值(logits) 的形状为 (N, C, ...),其中:

• N 是样本数(或批次大小)。

• C 是类别数。

• ... 是额外的维度(例如序列长度、图像的高度和宽度等)。

  1. 标签(targets) 的形状为 (N, ...),表示每个样本对应的分类标签。标签是整数索引,范围为 [0, C-1]。

其中重点为:PyTorch 的 CrossEntropyLoss要求输入张量的第二个维度必须是类别的个数,无论是 1D 数据、序列数据还是高维数据,这个要求都是一致的。第二维度始终对应分类任务中的类别数 (num_classes),这是 CrossEntropyLoss 的固定设计。

为什么第二维度必须是类别数?

CrossEntropyLoss 的计算方式基于每个样本的预测概率分布和真实类别标签:

  1. 对于每个样本或位置,CrossEntropyLoss 期望提供一个类别分布的 logits(未经过 softmax 的分值),这个分布存储在输入张量的第二维度。

  2. 损失函数会沿着第二维度(类别维度)计算每个样本的交叉熵损失。

换句话说,第二维度的每个值代表每个类别的 logits,这些 logits 会通过内部的 log_softmax 转换成对数概率,用于交叉熵计算。

相关推荐
阿里云云原生27 分钟前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报1 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
xiaohouzi1122331 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户125205597082 小时前
解决Stable Diffusion WebUI训练嵌入式模型报错问题
人工智能
用户8356290780512 小时前
从手动编辑到代码生成:Python 助你高效创建 Word 文档
后端·python
Juchecar2 小时前
一文讲清 nn.LayerNorm 层归一化
人工智能
martinzh2 小时前
RAG系统大脑调教指南:模型选择、提示设计与质量控保一本通
人工智能
小关会打代码2 小时前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
Juchecar2 小时前
一文讲清 nn.Linear 线性变换
人工智能
c8i2 小时前
python中类的基本结构、特殊属性于MRO理解
python