Pytorch中的CrossEntropyLoss

CrossEntropyLoss 的输入要求

在 PyTorch 中,CrossEntropyLoss 有以下要求:

  1. 预测值(logits) 的形状为 (N, C, ...),其中:

• N 是样本数(或批次大小)。

• C 是类别数。

• ... 是额外的维度(例如序列长度、图像的高度和宽度等)。

  1. 标签(targets) 的形状为 (N, ...),表示每个样本对应的分类标签。标签是整数索引,范围为 [0, C-1]。

其中重点为:PyTorch 的 CrossEntropyLoss要求输入张量的第二个维度必须是类别的个数,无论是 1D 数据、序列数据还是高维数据,这个要求都是一致的。第二维度始终对应分类任务中的类别数 (num_classes),这是 CrossEntropyLoss 的固定设计。

为什么第二维度必须是类别数?

CrossEntropyLoss 的计算方式基于每个样本的预测概率分布和真实类别标签:

  1. 对于每个样本或位置,CrossEntropyLoss 期望提供一个类别分布的 logits(未经过 softmax 的分值),这个分布存储在输入张量的第二维度。

  2. 损失函数会沿着第二维度(类别维度)计算每个样本的交叉熵损失。

换句话说,第二维度的每个值代表每个类别的 logits,这些 logits 会通过内部的 log_softmax 转换成对数概率,用于交叉熵计算。

相关推荐
小兵张健5 分钟前
Java + Spring 到 Python + FastAPI (三)
python·spring·fastapi
阿龍178713 分钟前
媒体文件问题检测脚本(一)(python+ffmpeg)
开发语言·python
速易达网络14 分钟前
flask与fastapi的区别
python
小oo呆28 分钟前
【自然语言处理与大模型】主题建模 Topic Modeling
人工智能·自然语言处理
ycydynq35 分钟前
python html 解析的一些写法
linux·python·html
KKKlucifer42 分钟前
从被动合规到主动免疫:AI 破解数据智能安全的四大核心场景
人工智能·安全
权泽谦1 小时前
脑肿瘤分割与分类的人工智能研究报告
人工智能·分类·数据挖掘
余俊晖1 小时前
文档图像旋转对VLM OCR的影响及基于Phi-3.5-Vision+分类头的文档方向分类器、及数据构建思路
人工智能·分类·ocr
Cleaner1 小时前
我是如何高效学习大模型的
人工智能·程序员·llm
西猫雷婶1 小时前
CNN的四维Pytorch张量格式
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn