Pytorch中的CrossEntropyLoss

CrossEntropyLoss 的输入要求

在 PyTorch 中,CrossEntropyLoss 有以下要求:

  1. 预测值(logits) 的形状为 (N, C, ...),其中:

• N 是样本数(或批次大小)。

• C 是类别数。

• ... 是额外的维度(例如序列长度、图像的高度和宽度等)。

  1. 标签(targets) 的形状为 (N, ...),表示每个样本对应的分类标签。标签是整数索引,范围为 [0, C-1]。

其中重点为:PyTorch 的 CrossEntropyLoss要求输入张量的第二个维度必须是类别的个数,无论是 1D 数据、序列数据还是高维数据,这个要求都是一致的。第二维度始终对应分类任务中的类别数 (num_classes),这是 CrossEntropyLoss 的固定设计。

为什么第二维度必须是类别数?

CrossEntropyLoss 的计算方式基于每个样本的预测概率分布和真实类别标签:

  1. 对于每个样本或位置,CrossEntropyLoss 期望提供一个类别分布的 logits(未经过 softmax 的分值),这个分布存储在输入张量的第二维度。

  2. 损失函数会沿着第二维度(类别维度)计算每个样本的交叉熵损失。

换句话说,第二维度的每个值代表每个类别的 logits,这些 logits 会通过内部的 log_softmax 转换成对数概率,用于交叉熵计算。

相关推荐
EasyDSS29 分钟前
WebRTC技术下的EasyRTC音视频实时通话SDK,助力车载通信打造安全高效的智能出行体验
人工智能·音视频
EelBarb37 分钟前
python:一个代理流量监控的媒体文件下载脚本
开发语言·python
jndingxin1 小时前
OpenCV CUDA模块中逐元素操作------数学函数
人工智能·opencv·计算机视觉
暴龙胡乱写博客1 小时前
机器学习 --- KNN算法
人工智能·算法·机器学习
Eric.Lee20211 小时前
python opencv 将不同shape尺寸的图片制作video视频
python·opencv·音视频
Amo Xiang1 小时前
Python 常用模块(八):logging模块
python·logging·日志
森哥的歌1 小时前
Python多线程
python·编程·多线程·并发·threading
极新1 小时前
极新携手火山引擎,共探AI时代生态共建的破局点与增长引擎
人工智能·火山引擎
抽风的雨6102 小时前
【python基础知识】Day26 函数
开发语言·python
是麟渊2 小时前
【大模型面试每日一题】Day 17:解释MoE(Mixture of Experts)架构如何实现模型稀疏性,并分析其训练难点
人工智能·自然语言处理·面试·职场和发展·架构