hive 小文件分析

1、获取fsimage文件:

hdfs dfsadmin -fetchImage /data/xy/

2、从二进制文件解析:

hdfs oiv -i /data/xy/fsimage_0000000019891608958 -t /data/xy/tmpdir -o /data/xy/out -p Delimited -delimiter ","

3、创建hive表

create database if not exists hdfsinfo;

use hdfsinfo;

CREATE TABLE fsimage_info_csv(

path string,

replication int,

modificationtime string,

accesstime string,

preferredblocksize bigint,

blockscount int,

filesize bigint,

nsquota string,

dsquota string,

permission string,

username string,

groupname string)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'

WITH SERDEPROPERTIES ('field.delim'=',', 'serialization.format'=',')

STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat';

4、存储HDFS元数据加载进hive中

hdfs dfs -put /data/xy/out /user/hive/warehouse/hdfsinfo.db/fsimage_info_csv/

hdfs dfs -ls /user/hive/warehouse/hdfsinfo.db/fsimage_info_csv/

Hive: MSCK REPAIR TABLE hdfsinfo.fsimage_info_csv;

select * from hdfsinfo.fsimage_info_csv limit 5;

5、统计叶子目录下小文件数据量(4194304 H字节,即<4M)

SELECT

dir_path ,

COUNT(*) AS small_file_num,

modificationtime,

accesstime

FROM

( SELECT

modificationtime,

accesstime,

relative_size,

dir_path

FROM

(

SELECT

(CASE filesize < 4194304 WHEN TRUE THEN 'small' ELSE 'large' END) AS relative_size,

modificationtime,

accesstime,

split(

substr(

concat_ws('/', split(PATH, '/')),

1,

length(concat_ws('/', split(PATH, '/'))) - length(last_element) - 1

),

',')[0] as dir_path

FROM (

SELECT

modificationtime,

accesstime,

filesize,

PATH,

split(PATH, '/')[size(split(PATH, '/')) - 1] as last_element

FROM hdfsinfo.fsimage_info_csv

) t0 ) t1

WHERE

relative_size='small') t2

GROUP BY

dir_path,modificationtime,accesstime

ORDER BY

small_file_num desc

limit 500;

5、统计叶子目录下小文件数据量(4194304 H字节,即<4M)

SELECT

dir_path,

COUNT(*) AS small_file_num

FROM

( SELECT

relative_size,

dir_path

FROM

(

SELECT

(CASE filesize < 41943040 WHEN TRUE THEN 'small' ELSE 'large' END) AS relative_size,

split(

substr(

concat_ws('/', split(PATH, '/')),

1,

length(concat_ws('/', split(PATH, '/'))) - length(last_element) - 1

),

',')[0] as dir_path

FROM (

SELECT

filesize,

PATH,

split(PATH, '/')[size(split(PATH, '/')) - 1] as last_element

FROM hdfsinfo.fsimage_info_csv

WHERE

permission not LIKE 'd%'

) t0 ) t1

WHERE

relative_size='small') t2

GROUP BY

dir_path

ORDER BY

small_file_num desc

limit 50000;

相关推荐
晴天彩虹雨2 小时前
Flink 数据清洗与字段标准化最佳实践
大数据·数据仓库·flink
TTBIGDATA2 小时前
如何将 Apache Hudi 接入 Ambari?完整部署与验证指南
大数据·hadoop·ambari·hudi·bigtop·湖仓·自定义组件集成
IT成长日记5 小时前
【Hive入门】Hive数据导出完全指南:从HDFS到本地文件系统的专业实践
hive·hadoop·hdfs·数据导出
向上的车轮6 小时前
数据湖DataLake和传统数据仓库Datawarehouse的主要区别是什么?优缺点是什么?
数据仓库
IT成长日记6 小时前
【Hive入门】Hive概述:大数据时代的数据仓库桥梁
大数据·数据仓库·hive·sql优化·分布式计算
大数据魔法师7 小时前
Hadoop生态圈框架部署 - Windows上部署Hadoop
大数据·hadoop·windows
渣渣盟7 小时前
大数据开发环境的安装,配置(Hadoop)
大数据·hadoop·分布式
weixin_3077791314 小时前
分层设计数据仓库的架构和设计高效数据库系统的方法
数据仓库·架构
IT成长日记18 小时前
【Hive入门】Hive查询语言(DQL)完全指南:从基础查询到高级分析
数据仓库·hive·hadoop·dql操作
橘猫云计算机设计19 小时前
springboot基于hadoop的酷狗音乐爬虫大数据分析可视化系统(源码+lw+部署文档+讲解),源码可白嫖!
数据库·hadoop·spring boot·爬虫·python·数据分析·毕业设计