hive 小文件分析

1、获取fsimage文件:

hdfs dfsadmin -fetchImage /data/xy/

2、从二进制文件解析:

hdfs oiv -i /data/xy/fsimage_0000000019891608958 -t /data/xy/tmpdir -o /data/xy/out -p Delimited -delimiter ","

3、创建hive表

create database if not exists hdfsinfo;

use hdfsinfo;

CREATE TABLE fsimage_info_csv(

path string,

replication int,

modificationtime string,

accesstime string,

preferredblocksize bigint,

blockscount int,

filesize bigint,

nsquota string,

dsquota string,

permission string,

username string,

groupname string)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'

WITH SERDEPROPERTIES ('field.delim'=',', 'serialization.format'=',')

STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat';

4、存储HDFS元数据加载进hive中

hdfs dfs -put /data/xy/out /user/hive/warehouse/hdfsinfo.db/fsimage_info_csv/

hdfs dfs -ls /user/hive/warehouse/hdfsinfo.db/fsimage_info_csv/

Hive: MSCK REPAIR TABLE hdfsinfo.fsimage_info_csv;

select * from hdfsinfo.fsimage_info_csv limit 5;

5、统计叶子目录下小文件数据量(4194304 H字节,即<4M)

SELECT

dir_path ,

COUNT(*) AS small_file_num,

modificationtime,

accesstime

FROM

( SELECT

modificationtime,

accesstime,

relative_size,

dir_path

FROM

(

SELECT

(CASE filesize < 4194304 WHEN TRUE THEN 'small' ELSE 'large' END) AS relative_size,

modificationtime,

accesstime,

split(

substr(

concat_ws('/', split(PATH, '/')),

1,

length(concat_ws('/', split(PATH, '/'))) - length(last_element) - 1

),

',')[0] as dir_path

FROM (

SELECT

modificationtime,

accesstime,

filesize,

PATH,

split(PATH, '/')[size(split(PATH, '/')) - 1] as last_element

FROM hdfsinfo.fsimage_info_csv

) t0 ) t1

WHERE

relative_size='small') t2

GROUP BY

dir_path,modificationtime,accesstime

ORDER BY

small_file_num desc

limit 500;

5、统计叶子目录下小文件数据量(4194304 H字节,即<4M)

SELECT

dir_path,

COUNT(*) AS small_file_num

FROM

( SELECT

relative_size,

dir_path

FROM

(

SELECT

(CASE filesize < 41943040 WHEN TRUE THEN 'small' ELSE 'large' END) AS relative_size,

split(

substr(

concat_ws('/', split(PATH, '/')),

1,

length(concat_ws('/', split(PATH, '/'))) - length(last_element) - 1

),

',')[0] as dir_path

FROM (

SELECT

filesize,

PATH,

split(PATH, '/')[size(split(PATH, '/')) - 1] as last_element

FROM hdfsinfo.fsimage_info_csv

WHERE

permission not LIKE 'd%'

) t0 ) t1

WHERE

relative_size='small') t2

GROUP BY

dir_path

ORDER BY

small_file_num desc

limit 50000;

相关推荐
Kookoos3 小时前
ABP vNext + Spark on Hadoop:实时流处理与微服务融合
hadoop·微服务·spark·.net·abp vnext
是梦终空3 小时前
JAVA毕业设计227—基于SpringBoot+hadoop+spark+Vue的大数据房屋维修系统(源代码+数据库)
hadoop·spring boot·spark·vue·毕业设计·源代码·大数据房屋维修系统
£菜鸟也有梦12 小时前
Flume进阶之路:从基础到高阶的飞跃
大数据·hive·hadoop·flume
Kookoos1 天前
ABP vNext + Hive 集成:多租户大数据 SQL 查询与报表分析
大数据·hive·sql·.net·abp vnext
weixin_307779131 天前
Clickhouse统计指定表中各字段的空值、空字符串或零值比例
运维·数据仓库·clickhouse
viperrrrrrrrrr71 天前
大数据学习(132)-HIve数据分析
大数据·hive·学习
社恐码农2 天前
Hive开窗函数的进阶SQL案例
hive·hadoop·sql
Leo.yuan2 天前
数据湖是什么?数据湖和数据仓库的区别是什么?
大数据·运维·数据仓库·人工智能·信息可视化
weixin_307779133 天前
Linux下GCC和C++实现统计Clickhouse数据仓库指定表中各字段的空值、空字符串或零值比例
linux·运维·c++·数据仓库·clickhouse
RestCloud3 天前
如何通过ETLCloud实现跨系统数据同步?
数据库·数据仓库·mysql·etl·数据处理·数据同步·集成平台