hive 小文件分析

1、获取fsimage文件:

hdfs dfsadmin -fetchImage /data/xy/

2、从二进制文件解析:

hdfs oiv -i /data/xy/fsimage_0000000019891608958 -t /data/xy/tmpdir -o /data/xy/out -p Delimited -delimiter ","

3、创建hive表

create database if not exists hdfsinfo;

use hdfsinfo;

CREATE TABLE fsimage_info_csv(

path string,

replication int,

modificationtime string,

accesstime string,

preferredblocksize bigint,

blockscount int,

filesize bigint,

nsquota string,

dsquota string,

permission string,

username string,

groupname string)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'

WITH SERDEPROPERTIES ('field.delim'=',', 'serialization.format'=',')

STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat';

4、存储HDFS元数据加载进hive中

hdfs dfs -put /data/xy/out /user/hive/warehouse/hdfsinfo.db/fsimage_info_csv/

hdfs dfs -ls /user/hive/warehouse/hdfsinfo.db/fsimage_info_csv/

Hive: MSCK REPAIR TABLE hdfsinfo.fsimage_info_csv;

select * from hdfsinfo.fsimage_info_csv limit 5;

5、统计叶子目录下小文件数据量(4194304 H字节,即<4M)

SELECT

dir_path ,

COUNT(*) AS small_file_num,

modificationtime,

accesstime

FROM

( SELECT

modificationtime,

accesstime,

relative_size,

dir_path

FROM

(

SELECT

(CASE filesize < 4194304 WHEN TRUE THEN 'small' ELSE 'large' END) AS relative_size,

modificationtime,

accesstime,

split(

substr(

concat_ws('/', split(PATH, '/')),

1,

length(concat_ws('/', split(PATH, '/'))) - length(last_element) - 1

),

',')[0] as dir_path

FROM (

SELECT

modificationtime,

accesstime,

filesize,

PATH,

split(PATH, '/')[size(split(PATH, '/')) - 1] as last_element

FROM hdfsinfo.fsimage_info_csv

) t0 ) t1

WHERE

relative_size='small') t2

GROUP BY

dir_path,modificationtime,accesstime

ORDER BY

small_file_num desc

limit 500;

5、统计叶子目录下小文件数据量(4194304 H字节,即<4M)

SELECT

dir_path,

COUNT(*) AS small_file_num

FROM

( SELECT

relative_size,

dir_path

FROM

(

SELECT

(CASE filesize < 41943040 WHEN TRUE THEN 'small' ELSE 'large' END) AS relative_size,

split(

substr(

concat_ws('/', split(PATH, '/')),

1,

length(concat_ws('/', split(PATH, '/'))) - length(last_element) - 1

),

',')[0] as dir_path

FROM (

SELECT

filesize,

PATH,

split(PATH, '/')[size(split(PATH, '/')) - 1] as last_element

FROM hdfsinfo.fsimage_info_csv

WHERE

permission not LIKE 'd%'

) t0 ) t1

WHERE

relative_size='small') t2

GROUP BY

dir_path

ORDER BY

small_file_num desc

limit 50000;

相关推荐
Gain_chance1 小时前
34-学习笔记尚硅谷数仓搭建-DWS层最近一日汇总表建表语句汇总
数据仓库·hive·笔记·学习·datagrip
Gain_chance3 小时前
36-学习笔记尚硅谷数仓搭建-DWS层数据装载脚本
大数据·数据仓库·笔记·学习
Gain_chance3 小时前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
无级程序员12 小时前
大数据Hive之拉链表增量取数合并设计(主表加历史表合并成拉链表)
大数据·hive·hadoop
华农DrLai14 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
心疼你的一切1 天前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
qq_12498707531 天前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
十月南城1 天前
Hive与离线数仓方法论——分层建模、分区与桶的取舍与查询代价
数据仓库·hive·hadoop
鹏说大数据1 天前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人1 天前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计