第六届全球校园人工智能算法精英大赛-算法巅峰专项赛(系列文章)-- 开篇

前言

"全球校园人工智能算法精英大赛"是江苏省人工智能学会举办的面向全球具有正式学籍的全日制高等院校及以上在校学生举办的算法竞赛。其中的算法巅峰专项赛是新赛道,2024年是其第一届比赛。

翻阅过所有赛道的题目,题目出的真心可以,很具挑战性,这一点无可指摘。

这边是记录个人的参赛经历,把遇到过的困难,疑惑,以及如何解决优化,分享一下。

成绩菜菜,求轻拍.

期待下一届有更多的同学参与这个比赛。


系列文章


题目描述



最佳实践

这道优化题,有个限制,就是每人只能提交3次,这大大削弱了优化题的竞争性。

但是如果只是一味抱怨,那就纯粹是三流选手,因为这个限制对所有人都是公平的。

那何如破局?

工程化的思维 工程化的思维 工程化的思维

  1. 学会造测试数据

  2. 学会让结果可视化

  3. 引入基准程序并不断迭代

  4. 结果自校验并预测得分

后续会详细展开

解题思路

变形的TSP题,内核还是TSP,如何求解呢?

思路一: 降维 - 传统TSP - 升维

TSP本身就是NP问题,而3D打印,又额外引入点集,导致数据规模暴涨。

因此这边的思路也很自然:

降维 − 传统 T S P − 升维 降维 - 传统TSP - 升维 降维−传统TSP−升维

  1. 每个图形挑选一个特征点,转化为传统的TSP问题
  2. TSP算法获得最优序列/排列
  3. 该序列构造层状网络(物体本身点集之间),再进行路径的优化构造

当然对于不同的数据规模,可以分类处理

  • 对于小数据集合精确解解法 (可选)
    • 图形个数<=8, 全排列
    • 图形个数<=16, 采用状压DP
  • 对于大数据集合,采用运筹学的算法

这个处理架构,其实可以多种解读,大部分解法基本可以归纳为此。

思路二: 魔改TSP算法

不降维,直接混合处理,即魔改模拟退火/遗传算法等算法的核心操作因子。


写在最后

相关推荐
Qiuner1 分钟前
Spring Boot AOP(五) 高级特性与源码实践
java·spring boot·后端
ℳ₯㎕ddzོꦿ࿐1 分钟前
Spring Boot MCP(stdio)工具实现的注意事项(踩坑总结)
java·spring boot·后端
IT·小灰灰1 分钟前
免费调用MiMo-V2-Flash:DMXAPI赋能下的AI应用新范式
人工智能
代码方舟2 分钟前
Java 进阶:基于 Spring Boot 集成天远数据“人脸比对 V3”的最佳实践
java·大数据·spring boot·python
非著名架构师2 分钟前
新材料研发的“加速风洞”:高精度AI气象如何重构极端环境测试范式
人工智能·高精度气象预测·风电功率预测·光伏功率预测·高精度农业气象·新能源功率预测
北京宇音天下3 分钟前
城市守护者:VTX316芯片如何用语音重塑公共安全播报
人工智能·语音识别
bbq粉刷匠3 分钟前
Java基础语法问答
java·开发语言·python
byzh_rc4 分钟前
[算法设计与分析-从入门到入土] 查找&合并&排序&复杂度&平摊分析
数据结构·数据库·人工智能·算法·机器学习·支持向量机·排序算法
‿hhh1 小时前
微服务智慧交通管理平台 - 项目实现(结合Qoder搭建)
java·人工智能·机器学习·微服务·架构·需求分析·规格说明书
ysdysyn1 小时前
AI:制造的“智慧预言家”——预测未来、优化现在的智能大脑*
人工智能·程序人生·ai·数据分析·制造