第六届全球校园人工智能算法精英大赛-算法巅峰专项赛(系列文章)-- 开篇

前言

"全球校园人工智能算法精英大赛"是江苏省人工智能学会举办的面向全球具有正式学籍的全日制高等院校及以上在校学生举办的算法竞赛。其中的算法巅峰专项赛是新赛道,2024年是其第一届比赛。

翻阅过所有赛道的题目,题目出的真心可以,很具挑战性,这一点无可指摘。

这边是记录个人的参赛经历,把遇到过的困难,疑惑,以及如何解决优化,分享一下。

成绩菜菜,求轻拍.

期待下一届有更多的同学参与这个比赛。


系列文章


题目描述



最佳实践

这道优化题,有个限制,就是每人只能提交3次,这大大削弱了优化题的竞争性。

但是如果只是一味抱怨,那就纯粹是三流选手,因为这个限制对所有人都是公平的。

那何如破局?

工程化的思维 工程化的思维 工程化的思维

  1. 学会造测试数据

  2. 学会让结果可视化

  3. 引入基准程序并不断迭代

  4. 结果自校验并预测得分

后续会详细展开

解题思路

变形的TSP题,内核还是TSP,如何求解呢?

思路一: 降维 - 传统TSP - 升维

TSP本身就是NP问题,而3D打印,又额外引入点集,导致数据规模暴涨。

因此这边的思路也很自然:

降维 − 传统 T S P − 升维 降维 - 传统TSP - 升维 降维−传统TSP−升维

  1. 每个图形挑选一个特征点,转化为传统的TSP问题
  2. TSP算法获得最优序列/排列
  3. 该序列构造层状网络(物体本身点集之间),再进行路径的优化构造

当然对于不同的数据规模,可以分类处理

  • 对于小数据集合精确解解法 (可选)
    • 图形个数<=8, 全排列
    • 图形个数<=16, 采用状压DP
  • 对于大数据集合,采用运筹学的算法

这个处理架构,其实可以多种解读,大部分解法基本可以归纳为此。

思路二: 魔改TSP算法

不降维,直接混合处理,即魔改模拟退火/遗传算法等算法的核心操作因子。


写在最后

相关推荐
北京耐用通信几秒前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20096 分钟前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟7 分钟前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
小糖学代码31 分钟前
LLM系列:1.python入门:3.布尔型对象
linux·开发语言·python
央链知播38 分钟前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训44 分钟前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
Data_agent1 小时前
1688获得1688店铺详情API,python请求示例
开发语言·爬虫·python
YIN_尹1 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
开心香辣派小星1 小时前
23种设计模式-15解释器模式
java·设计模式·解释器模式
风筝在晴天搁浅2 小时前
代码随想录 718.最长重复子数组
算法