【Flink-scala】DataStream编程模型总结

系列文章目录

1.【Flink-Scala】DataStream编程模型之数据源、数据转换、数据输出

2.【Flink-scala】DataStream编程模型之 窗口的划分-时间概念-窗口计算程序

3.【Flink-scala】DataStream编程模型之窗口计算-触发器-驱逐器

4.【Flink-scala】DataStream编程模型之水位线

5.【Flink-scala】DataStream编程模型之延迟数据处理

6.【Flink-scala】DataStream编程模型之状态编程

文章目录


总结

DataStream API是Flink的核心,因为Flink和其他计算框架(比如Spark、MapReduce等)相比,其最大的优势就在于强大的流计算功能。本章首先介绍了在使用DataStream接口编程中的基本操作,包括数据源、数据转换、数据输出、窗口的划分等。

对于流式数据处理,最大的特点是数据上具有时间的属性特征,Flink根据时间产生位置的不同,将时间划分为三种,分别为事件生成时间、时间接入时间和事件处理时间,本章内容对三种时间概念进行了详细介绍。

窗口计算时流式计算中非常常用的数据计算方式之一,通过按照固定时间或长度将数据流切分成不同的窗口,然后对数据进行相应的聚合计算,就可以得到一定时间范围内的统计结果。本章内容介绍了窗口的型以及窗口计算函数。

通常情况下,由于网络或者系统等外部因素的影响三种类,事件数据往往不能及时传输至Flink系统中,从而导致数据乱序到达或者延迟到达的问题。本章介绍了如何采用水位线机制解决这类问题。本章最后介绍了有状态计算的编程方法。

相关推荐
nini_boom4 小时前
**论文初稿撰写工具2025推荐,高效写作与智能辅助全解析*
大数据·python·信息可视化
小园子的小菜5 小时前
Elasticsearch高阶用法实战:从数据建模到集群管控的极致优化
大数据·elasticsearch·搜索引擎
源码之家7 小时前
机器学习:基于大数据二手房房价预测与分析系统 可视化 线性回归预测算法 Django框架 链家网站 二手房 计算机毕业设计✅
大数据·算法·机器学习·数据分析·spark·线性回归·推荐算法
Ctrl+S 之后7 小时前
新型多模态交互系统如何推动未来沉浸式数字体验全面进化的技术革新路线解析
flink
布吉岛没有岛_8 小时前
Hadoop学习_week1
大数据·hadoop
阿里云大数据AI技术10 小时前
云栖实录 | 洋钱罐基于 EMR Serverless 产品构建全球一体化数字金融平台
大数据·运维
零碎岛1112 小时前
scala中trait基本使用
scala
正在走向自律13 小时前
大数据时代时序数据库选型指南:从技术架构到实战案例
大数据·架构·时序数据库
攻城狮7号13 小时前
万物互联时代,如何选择合适的时序数据库?
大数据·物联网·时序数据库·apache iotdb·sql mcp
黄焖鸡能干四碗14 小时前
网络安全态势报告,网络安全风险评估报告文档
大数据·网络·安全·web安全·信息可视化·需求分析