MATLAB图卷积神经网络GCN处理分子数据集节点分类研究

全文链接: https://tecdat.cn/?p=38570

本文主要探讨了如何利用图卷积网络(GCN)对图中的节点进行分类。介绍了相关的数据处理、模型构建、训练及测试等环节,通过对分子数据集的操作实践,展示了完整的节点分类流程,并对模型的效果进行了多方面评估,旨在为相关领域的研究与应用提供参考。

图卷积网络(GCN)是卷积神经网络的一种变体,在处理图结构数据的节点分类任务中有着重要应用。例如在化学领域,给定分子结构(以图表示化学键),可以利用GCN预测分子中原子的类型(如碳、氧等)。本文以数据集为例,详细阐述基于GCN的节点分类实现过程。

数据准备

(一)数据集下载与加载

首先从指定网址下载数据集,该数据集包含碳、氢、氮、氧和硫这五种不同的原子。通过以下代码实现下载与初步处理:

复制代码
if ~exist(data_file,"file"):
 mkdir(output_folder)

加载下载好的MAT文件中的数据,其包含多个不同的数组,本文主要使用代表库仑矩阵的X数组和代表每个原子原子序数的Z数组,代码如下:

复制代码
data = load(data_file)

(二)图数据预处理

从加载的数据结构中提取库仑数据和原子序数,并进行相应变换。

为了将训练数据中的库仑矩阵转换为邻接矩阵。之后对部分数据进行可视化展示,查看分子的相关情况,像提取未填充的邻接矩阵、将原子序数转换为符号并绘图等,代码如下:

复制代码
 nexttile
 plot(G,NodeLabel=symbols,Layout="force")

利用直方图可视化各标签类别的频率,代码如下:

复制代码
figure
histogram(categorical(atomicSymbol(atom_data)))

对数据进行划分,分为训练集、验证集和测试集,分别包含80%、10%和10%的数据。

模型构建

(一)深度学习模型定义

定义的深度学习模型输入为邻接矩阵A和特征矩阵X,输出分类预测结果。模型是一系列形如 Zl+1=σl(D^−1/2A^D^−1/2ZlWl)+Zl的操作组合,其中涉及激活函数、权重矩阵等不同元素。

(二)模型参数初始化

创建结构来存放模型参数,并利用函数(本文附属文件)初始化各乘法操作的可学习权重:

复制代码
parameters = struct()
num_hidden_feature_maps = 32

(三)模型相关函数定义

创建函数,其输入模型参数、特征数据和邻接矩阵,返回预测结果;输入模型参数、特征数据、邻接矩阵以及独热编码目标,返回损失、损失相对于参数的梯度和网络预测;另外还有函数,它们各自在模型的训练、预测等环节发挥重要作用。

模型训练

设定训练轮数为1500轮,学习率为0.01,每300轮验证一次网络。初始化Adam相关参数,将训练和验证特征数据转换为特定对象格式,若有可用GPU则将数据转换到GPU上进行训练,同时将训练和验证标签转换为独热编码向量,并初始化训练进度监测对象。然后利用自定义训练循环训练模型,在每一轮中进行模型损失和梯度评估、更新网络参数、更新训练绘图以及按要求验证网络等操作:

复制代码
num_epochs = 1500
learn_rate = 0.01
validation_frequency = 300
trailing_avg = []
trailing_avg_sq = []

模型测试与预测

(一)模型测试

使用测试数据对模型进行测试,先按照训练和验证数据的处理步骤预处理测试数据,将测试特征数据转换为相应对象格式,利用模型进行预测并将概率转换为分类标签,最后计算准确率,还通过混淆矩阵等方式可视化模型的预测情况,评估模型基于类别精度和召回率等指标的表现。

计算混淆矩阵:

复制代码
figure
cm = confusionchart(labels_test,Y_test, 

(二)新数据预测

利用函数对未标记数据进行预测,选择测试数据的前几个观测值简单示例,可视化预测结果,将预测结果作为节点标签绘制分子的图表示:

复制代码
num_observations_new = 4
adjacency_data_new = adjacency_data_test[:,:,1:num_observations_new]

总结

本文通过对数据集完整的处理、基于图卷积网络的模型构建、训练及测试等流程展示,呈现了图中节点分类任务的实现过程及相关方法应用。结果表明模型在该任务中有一定的准确率等表现,后续可进一步探索优化模型结构、改进数据处理方式等方面,以提升模型在节点分类任务中的性能,更好地应用于如化学分子结构分析等诸多领域。

参考文献

1\] Kipf, Thomas N., and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks." Paper presented at ICLR 2017, Toulon, France, April 2017. \[2\] Blum, Lorenz C., and Jean-Louis Reymond. "970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13." Journal of the American Chemical Society 131, no. 25 (July 1, 2009): 8732--33. [https://doi.org/10.1021/ja902302h](https://doi.org/10.1021/ja902302h "https://doi.org/10.1021/ja902302h"). \[3\] Rupp, Matthias, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld. "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning." Physical Review Letters 108, no. 5 (January 31, 2012): 058301. [https://doi.org/10.1103/PhysRevLett.108.058301](https://doi.org/10.1103/PhysRevLett.108.058301 "https://doi.org/10.1103/PhysRevLett.108.058301"). ![](https://i-blog.csdnimg.cn/direct/b696d15903b94ff481b46a2670ff366f.jpeg)

相关推荐
f***a3468 分钟前
开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)
人工智能·spring·开源
用户51914958484511 分钟前
BBDown:高效便捷的哔哩哔哩视频下载工具
人工智能·aigc
CV实验室13 分钟前
CV论文速递:覆盖视频生成与理解、3D视觉与运动迁移、多模态与跨模态智能、专用场景视觉技术等方向 (11.17-11.21)
人工智能·计算机视觉·3d·论文·音视频·视频生成
●VON14 分钟前
AI不能做什么?澄清常见误解
人工智能
数据堂官方账号21 分钟前
行业洞见 | AI鉴伪:数据驱动的数字安全变革
人工智能·安全
能鈺CMS23 分钟前
内容付费系统全面解析:构建知识变现体系的最强工具(2025 SEO 深度专题)
大数据·人工智能·html
Salt_07281 小时前
DAY 19 数组的常见操作和形状
人工智能·python·机器学习
技术探索家1 小时前
别再让Claude乱写代码了!一个配置文件让AI准确率提升10%
人工智能
算家计算2 小时前
AI学习范式变革:Ilya Sutskever最新访谈揭示后规模时代的AI发展路径—从算力竞争到研究竞争的转向
人工智能·资讯
Jing_Rainbow2 小时前
【AI-7 全栈-2 /Lesson16(2025-11-01)】构建一个基于 AIGC 的 Logo 生成 Bot:从前端到后端的完整技术指南 🎨
前端·人工智能·后端