【AIGC学习笔记】——GraphRAG本地部署

【GraphRAG+Ollama本地部署】新鲜滚热辣的小白操作


文章目录


环境准备+源码下载

1.操作系统:Ubuntu20.04

2.VSCode编译器

3.Python 3.11

4.Ollama安装

5.GraphRAG代码下载:https://github.com/microsoft/graphrag.git

一、Anaconda虚拟环境创建及配置

1.conda create --name graphR python=3.11

2.pip install graphrag==0.3.6(新版本的graphrag容易报错:No module named graphrag.index.main

3.pip install ollama

(接下来操作期间若出现未提及包的未安装提示,就按照提示安装即可)

二、Ollama模型下载

1.ollama serve (启动ollama)

2.ollama pull mistral:v0.2

3.ollama pull nomic-embed-text:latest

三、创建数据目录

在graphrag代码文件夹中创建一个ragtest文件夹,并在ragtest文件夹中创建一个input文件夹,把txt数据放在input文件夹中

四、项目初始化

1.python -m graphrag.index --init --root ./ragtest

(在graphrag代码文件夹中打开终端,并激活graphR虚拟环境,运行上述代码,随后在ragtest文件夹中会出现setting.yaml,prompts,.env等文件,正常情况下是有图中6个东西的,但是有时候一开始只有几个,后面建立索引的时候其余的也会自动生成)

四、修改配置文件settings.yaml

按照下面的代码修改即可

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ollama
  type: openai_chat # or azure_openai_chat
  model: mistral:v0.2
  model_supports_json: true # recommended if this is available for your model.
  max_tokens: 1024
  # request_timeout: 180.0
  api_base: http://localhost:11434/v1
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  # target: required # or all
  # batch_size: 16 # the number of documents to send in a single request
  # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
  llm:
    api_key: ollama
    type: openai_embedding # or azure_openai_embedding
    model: nomic-embed-text:latest
    api_base: http://localhost:11434/api
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made

chunks:
  size: 200
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents

input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## strategy: fully override the entity extraction strategy.
  ##   type: one of graph_intelligence, graph_intelligence_json and nltk
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 0

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 0

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

五、修改.env文件

按照下面的代码修改即可

GRAPHRAG_API_KEY=ollama
GRAPHRAG_CLAIM_EXTRACTION_ENABLED=True

六、修改虚拟环境graphR里graphrag包的源码

1.找到graphrag包位置:/home//.conda/envs/graphR/lib/python3.11/site-packages
2.修改第一个文件:/home/
/.conda/envs/graphR/lib/python3.11/site-packages/graphrag/llm/openai/openai_embeddings_llm.py

"""The EmbeddingsLLM class."""

from typing_extensions import Unpack

from graphrag.llm.base import BaseLLM
from graphrag.llm.types import (
    EmbeddingInput,
    EmbeddingOutput,
    LLMInput,
)

from .openai_configuration import OpenAIConfiguration
from .types import OpenAIClientTypes
import ollama # 增加依赖


class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
    """A text-embedding generator LLM."""

    _client: OpenAIClientTypes
    _configuration: OpenAIConfiguration

    def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
        self.client = client
        self.configuration = configuration

    async def _execute_llm(
        self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]
    ) -> EmbeddingOutput | None:
        args = {
            "model": self.configuration.model,
            **(kwargs.get("model_parameters") or {}),
        }
        # 修改此处
        #embedding = await self.client.embeddings.create(
        #    input=input,
        #    **args,
        #)
        #return [d.embedding for d in embedding.data]
        
        embedding_list = []
        for inp in input:
            embedding = ollama.embeddings(model="nomic-embed-text:latest", prompt=inp)
            embedding_list.append(embedding["embedding"])
        return embedding_list

3.修改第二个文件:/home/***/.conda/envs/graphR/lib/python3.11/site-packages/graphrag/query/llm/oai/embedding.py

"""OpenAI Embedding model implementation."""

import asyncio
from collections.abc import Callable
from typing import Any

import numpy as np
import tiktoken
from tenacity import (
    AsyncRetrying,
    RetryError,
    Retrying,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential_jitter,
)

from graphrag.logging import StatusLogger
from graphrag.query.llm.base import BaseTextEmbedding
from graphrag.query.llm.oai.base import OpenAILLMImpl
from graphrag.query.llm.oai.typing import (
    OPENAI_RETRY_ERROR_TYPES,
    OpenaiApiType,
)
from graphrag.query.llm.text_utils import chunk_text
# 增加依赖
import ollama


class OpenAIEmbedding(BaseTextEmbedding, OpenAILLMImpl):
    """Wrapper for OpenAI Embedding models."""

    def __init__(
        self,
        api_key: str | None = None,
        azure_ad_token_provider: Callable | None = None,
        model: str = "text-embedding-3-small",
        deployment_name: str | None = None,
        api_base: str | None = None,
        api_version: str | None = None,
        api_type: OpenaiApiType = OpenaiApiType.OpenAI,
        organization: str | None = None,
        encoding_name: str = "cl100k_base",
        max_tokens: int = 8191,
        max_retries: int = 10,
        request_timeout: float = 180.0,
        retry_error_types: tuple[type[BaseException]] = OPENAI_RETRY_ERROR_TYPES,  # type: ignore
        reporter: StatusLogger | None = None,
    ):
        OpenAILLMImpl.__init__(
            self=self,
            api_key=api_key,
            azure_ad_token_provider=azure_ad_token_provider,
            deployment_name=deployment_name,
            api_base=api_base,
            api_version=api_version,
            api_type=api_type,  # type: ignore
            organization=organization,
            max_retries=max_retries,
            request_timeout=request_timeout,
            reporter=reporter,
        )

        self.model = model
        self.encoding_name = encoding_name
        self.max_tokens = max_tokens
        self.token_encoder = tiktoken.get_encoding(self.encoding_name)
        self.retry_error_types = retry_error_types

    def embed(self, text: str, **kwargs: Any) -> list[float]:
        """
        Embed text using OpenAI Embedding's sync function.

        For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
        Please refer to: https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
        """
        token_chunks = chunk_text(
            text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
        )
        chunk_embeddings = []
        chunk_lens = []
        for chunk in token_chunks:
            try:
                #embedding, chunk_len = self._embed_with_retry(chunk, **kwargs)
                #修改embedding、chunk_len
                embedding = ollama.embeddings(model='nomic-embed-text:latest', prompt=chunk)['embedding']
                chunk_len = len(chunk)
                chunk_embeddings.append(embedding)
                chunk_lens.append(chunk_len)
            # TODO: catch a more specific exception
            except Exception as e:  # noqa BLE001
                self._reporter.error(
                    message="Error embedding chunk",
                    details={self.__class__.__name__: str(e)},
                )

                continue
        #chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)
        #chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
        #return chunk_embeddings.tolist()
        return chunk_embeddings

    

    async def aembed(self, text: str, **kwargs: Any) -> list[float]:
        """
        Embed text using OpenAI Embedding's async function.

        For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
        """
        token_chunks = chunk_text(
            text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
        )
        chunk_embeddings = []
        chunk_lens = []
        embedding_results = await asyncio.gather(*[
            self._aembed_with_retry(chunk, **kwargs) for chunk in token_chunks
        ])
        embedding_results = [result for result in embedding_results if result[0]]
        chunk_embeddings = [result[0] for result in embedding_results]
        chunk_lens = [result[1] for result in embedding_results]
        chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)  # type: ignore
        chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
        return chunk_embeddings.tolist()

    def _embed_with_retry(
        self, text: str | tuple, **kwargs: Any
    ) -> tuple[list[float], int]:
        try:
            retryer = Retrying(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential_jitter(max=10),
                reraise=True,
                retry=retry_if_exception_type(self.retry_error_types),
            )
            for attempt in retryer:
                with attempt:
                    embedding = (
                        self.sync_client.embeddings.create(  # type: ignore
                            input=text,
                            model=self.model,
                            **kwargs,  # type: ignore
                        )
                        .data[0]
                        .embedding
                        or []
                    )
                    return (embedding, len(text))
        except RetryError as e:
            self._reporter.error(
                message="Error at embed_with_retry()",
                details={self.__class__.__name__: str(e)},
            )
            return ([], 0)
        else:
            # TODO: why not just throw in this case?
            return ([], 0)

    async def _aembed_with_retry(
        self, text: str | tuple, **kwargs: Any
    ) -> tuple[list[float], int]:
        try:
            retryer = AsyncRetrying(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential_jitter(max=10),
                reraise=True,
                retry=retry_if_exception_type(self.retry_error_types),
            )
            async for attempt in retryer:
                with attempt:
                    embedding = (
                        await self.async_client.embeddings.create(  # type: ignore
                            input=text,
                            model=self.model,
                            **kwargs,  # type: ignore
                        )
                    ).data[0].embedding or []
                    return (embedding, len(text))
        except RetryError as e:
            self._reporter.error(
                message="Error at embed_with_retry()",
                details={self.__class__.__name__: str(e)},
            )
            return ([], 0)
        else:
            # TODO: why not just throw in this case?
            return ([], 0)

4.修改第三个文件:/home/***/.conda/envs/graphR/lib/python3.11/site-packages/graphrag/query/llm/text_utils.py

"""Text Utilities for LLM."""

from collections.abc import Iterator
from itertools import islice

import tiktoken


def num_tokens(text: str, token_encoder: tiktoken.Encoding | None = None) -> int:
    """Return the number of tokens in the given text."""
    if token_encoder is None:
        token_encoder = tiktoken.get_encoding("cl100k_base")
    return len(token_encoder.encode(text))  # type: ignore


def batched(iterable: Iterator, n: int):
    """
    Batch data into tuples of length n. The last batch may be shorter.

    Taken from Python's cookbook: https://docs.python.org/3/library/itertools.html#itertools.batched
    """
    # batched('ABCDEFG', 3) --> ABC DEF G
    if n < 1:
        value_error = "n must be at least one"
        raise ValueError(value_error)
    it = iter(iterable)
    while batch := tuple(islice(it, n)):
        yield batch


def chunk_text(
    text: str, max_tokens: int, token_encoder: tiktoken.Encoding | None = None
):
    """Chunk text by token length."""
    if token_encoder is None:
        token_encoder = tiktoken.get_encoding("cl100k_base")
    tokens = token_encoder.encode(text)  # type: ignore
    # 增加下行代码,将tokens解码成字符串
    tokens = token_encoder.decode(tokens)
    chunk_iterator = batched(iter(tokens), max_tokens)
    #yield from (token_encoder.decode(list(chunk)) for chunk in chunk_iterator)
    yield from chunk_iterator

七、建立索引

1.打开ollama,可以看到模型运行状态

2.python -m graphrag.index --root ./ragtest

(回到第四步打开的终端页面,运行这行代码,并出现图中结果即建立完成)

八、开始查询

1.局部查询:python -m graphrag.query --root ./ragtest --method local "who is Marley?"

2.全局查询:python -m graphrag.query --root ./ragtest --method global "who is Marley?"

(注意:我在查询的时候会出现没有graphrag.logging的错误提示,直接把源码中graphrag文件夹里面的logging文件夹复制到虚拟环境中graphrag包里相应位置就解决了)

参考博文:

1.https://blog.csdn.net/weixin_42107217/article/details/141649920

2.https://blog.csdn.net/gaotianhao123/article/details/140640415

3.https://blog.csdn.net/m0_56378800/article/details/140319467

相关推荐
不想写代码的我5 分钟前
梁山派入门指南3——串口使用详解,包括串口发送数据、重定向、中断接收不定长数据、DMA+串口接收不定长数据,以及对应的bsp文件和使用示例
单片机·学习·gd32·梁山派
虾球xz12 分钟前
游戏引擎学习第84天
学习·游戏引擎
m0_748240541 小时前
AutoSar架构学习笔记
笔记·学习·架构
五月君3 小时前
Windsurf 发布Wave 2,Web实时搜索、URL上下文、自动化记忆等一大波新功能来袭!
aigc
siy23333 小时前
[c语言日寄]结构体的使用及其拓展
c语言·开发语言·笔记·学习·算法
雾里看山3 小时前
【MySQL】数据库基础知识
数据库·笔记·mysql·oracle
安和昂3 小时前
effective Objective—C 第三章笔记
java·c语言·笔记
mit6.8244 小时前
What is Json?
c++·学习·json
weixin_SAG4 小时前
14天学习微服务-->第1天:微服务架构入门
学习·微服务·架构