C++算法第十一天

本篇文章我们继续学习动态规划

目录

第一题

题目链接

题目解析

代码原理

代码编写

第二题

题目链接

题目解析

代码原理

代码编写

第三题

题目链接

题目解析

代码原理

代码编写

第四题

题目链接

题目解析

代码原理

代码编写

第五题

题目链接

题目解析

代码原理

代码编写

题后总结


第一题

题目链接

题目解析

代码原理

代码编写

class Solution {

public:

int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {

int m = obstacleGrid.size(), n = obstacleGrid[0].size();

//建表

vector<vector<int>> dp(m + 1, vector<int>(n + 1));

//初始化

dp[0][1] = 1;//当然这里dp[1][0] = 1也是可以的

//填表

for(int i = 1; i <= m; i++)

{

for(int j = 1; j <= n; j++)

{

//状态转移方程

if(obstacleGrid[i - 1][j - 1] == 0)

dp[i][j] = dp[i - 1][j] + dp[i][j - 1];

}

}

return dp[m][n];

}

};

第二题

题目链接

LCR 166. 珠宝的最高价值 - 力扣(LeetCode)

题目解析

代码原理

代码编写

class Solution {

public:

int jewelleryValue(vector<vector<int>>& frame) {

int m = frame.size(), n = frame[0].size();

//建表

vector<vector<int>> dp(m + 1, vector<int>(n + 1));

//初始化

dp[0][1] = 0;

//填表

for(int i = 1; i <= m; i++)

{

for(int j = 1; j <= n; j++)

{

dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + frame[i - 1][j - 1];

}

}

return dp[m][n];

}

};

第三题

题目链接

931. 下降路径最小和 - 力扣(LeetCode)

题目解析

代码原理

代码编写

class Solution {

public:

int minFallingPathSum(vector<vector<int>>& matrix) {

int n = matrix.size();

//建表

vector<vector<int>> dp(n + 1,vector<int>(n + 2, INT_MAX));

//初始化第一行

for(int j = 0; j < n + 2; j++)

{

dp[0][j] = 0;

}

//填表

for(int i = 1; i < n + 1; i++)

{

for(int j = 1; j <= n; j++)

{

dp[i][j] = min(min(dp[i - 1][j - 1], dp[i - 1][j]),dp[i - 1][j + 1]) + matrix[i - 1][j - 1];

}

}

int ret = INT_MAX;

for(int j = 1; j <= n; j++)

{

ret = min(ret, dp[n][j]);

}

return ret;

}

};

第四题

题目链接

64. 最小路径和 - 力扣(LeetCode)

题目解析

代码原理

代码编写

class Solution {

public:

int minPathSum(vector<vector<int>>& grid) {

int m = grid.size(), n = grid[0].size();

//建表

vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));

//初始化

dp[0][1] = 0;

//填表

for(int i = 1; i <= m; i++)

{

for(int j = 1; j <= n; j++)

{

dp[i][j] = min(dp[i - 1][j],dp[i][j - 1]) + grid[i - 1][j - 1];

}

}

return dp[m][n];

}

};

第五题

题目链接

174. 地下城游戏 - 力扣(LeetCode)

题目解析

代码原理

这里的状态方程有个小错误需要注意一下,正确的我放在下面啦,别看漏哦

正确的状态转移方程:dp[i][j] = min(dp[i][j + 1],dp[i + 1][j]) - cur[i][j]

代码编写

class Solution {

public:

int calculateMinimumHP(vector<vector<int>>& dungeon) {

int m = dungeon.size(),n = dungeon[0].size();

//建表

vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));

//初始化

dp[m][n - 1] = dp[m - 1][n] = 1;

//填表

for(int i = m - 1; i >= 0; i--)

{

for(int j = n - 1; j >= 0; j--)

{

dp[i][j] = min(dp[i][j + 1], dp[i + 1][j]) - dungeon[i][j];

dp[i][j] = max(1,dp[i][j]);

}

}

return dp[0][0];

}

};

题后总结

通过今天的题,我们可以总结出以下几点

1.填表时需要使用原表上的数据时,行列各减1

2.初始化部分的目的:保证填表时不越界

保证填表时后面的数据正确

3.如何正确初始化:结合状态表示和状态转移方程,进行分析哪些地方存在越界的可能性

那么本篇文章的内容就先到此结束,我们下期文章再见!!!

记得一键三联哦

相关推荐
张晓~183399481217 分钟前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
dpxiaolong16 分钟前
RK3588 Android12默认移除导航栏
开发语言·python
ゞ 正在缓冲99%…37 分钟前
leetcode101.对称二叉树
算法
Pocker_Spades_A1 小时前
Python快速入门专业版(二十九):函数返回值:多返回值、None与函数嵌套调用
服务器·开发语言·python
良木林1 小时前
浅谈原型。
开发语言·javascript·原型模式
烈风1 小时前
004 Rust控制台打印输出
开发语言·后端·rust
YuTaoShao1 小时前
【LeetCode 每日一题】3000. 对角线最长的矩形的面积
算法·leetcode·职场和发展
2zcode1 小时前
基于Matlab可见光通信系统中OOK调制的误码率性能建模与分析
算法·matlab·php
一枝小雨1 小时前
【C++】list 容器操作
开发语言·c++·笔记·list·学习笔记
HMBBLOVEPDX1 小时前
C++(继承和多态)
开发语言·c++·继承和多态