如何通过HTTP API新建Collection

本文介绍如何通过HTTP API创建一个新的Collection。


前提条件

Method与URL

HTTP

复制代码
POST https://{Endpoint}/v1/collections

使用示例

说明

需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

创建单向量集合

Shell

复制代码
# 创建一个名称为quickstart、向量维度为4、
# 向量数据类型为float(默认值)、
# 距离度量方式为dotproduct(内积)的Collection
# 并预先定义三个Field,名称为name、weight、age,数据类型分别为string、float、int

curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "name": "quickstart", 
    "dimension": 4, 
    "metric": "dotproduct", 
    "fields_schema": {
      "name": "STRING",
      "age": "INT",
      "weight": "FLOAT"
    }
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections

# example output:
# {"request_id":"19215409-ea66-4db9-8764-26ce2eb5bb99","code":0,"message":""}

创建多向量集合

复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "name": "multi_vector_demo", 
    "vectors_schema": {
      "title": {
        "dimension": 4
      },
      "content": {
        "dimension": 6,
        "metric": "dotproduct"
      }
    },
    "fields_schema": {
      "author": "STRING"
    }
}' https://YOUR_CLUSTER_ENDPOINT/v1/collections

# example output:
# {"request_id":"819b6ffe-bf44-42a4-8efa-a53a93d93bcd","code":0,"message":""}

入参描述

|-----------------------|--------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------|
| 参数 | Location | 类型 | 必填 | 说明 |
| {Endpoint} | path | str | 是 | Cluster的Endpoint,可在控制台Cluster详情中查看 |
| dashvector-auth-token | header | str | 是 | api-key |
| name | body | str | 是 | 待创建的Collection名称 |
| dimension | body | int | 是 | 向量维度,取值范围 (1, 20000] |
| dtype | body | str | 否 | 向量数据类型,"FLOAT"(默认)/"INT" |
| fields_schema | body | object | 否 | Fields定义 |
| metric | body | str | 否 | 距离度量方式,"euclidean"/"dotproduct"/"cosine"(默认) 值为cosine时,dtype必须为FLOAT |
| extra_params | body | object | 否 | 可选参数: * quantize_type:量化策略,详情参考向量动态量化 * auto_id: 自动生成主键,默认开启 |
| vectors_schema | body | object | 否 | 多个向量字段定义,类型为 Map<String, VectorParam>,详情参考多向量检索 |

说明

出参描述

|------------|--------|---------------------------------------------------------------------------------|--------------------------------------|
| 字段 | 类型 | 描述 | 示例 |
| code | int | 返回值,参考返回状态码说明 | 0 |
| message | str | 返回消息 | success |
| request_id | str | 请求唯一id | 19215409-ea66-4db9-8764-26ce2eb5bb99 |

相关推荐
无风听海2 分钟前
神经网络之密集的词向量如何能够代表稀疏的词向量
人工智能·神经网络·机器学习
DarkAthena5 分钟前
【GaussDB】在duckdb中查询GaussDB的数据
数据库·gaussdb·duckdb
文火冰糖的硅基工坊6 分钟前
[人工智能-大模型-74]:模型层技术 - 模型训练六大步:③神经网络,预测输出:基本功能与对应的基本组成函数
人工智能·深度学习·神经网络
mwq301237 分钟前
RLHF-奖励模型RM 的“引擎”:Pairwise Loss 梯度计算详解
人工智能
亚远景aspice9 分钟前
亚远景热烈祝贺保隆科技通过ASPICE CL2评估
大数据·人工智能·物联网
苏琢玉10 分钟前
收藏版:Phinx 数据库迁移完全指南
数据库·mysql·php
苍何15 分钟前
这款国产智能编码工具,竟然登顶全球TOP3!
人工智能
许泽宇的技术分享16 分钟前
提示词工程完全指南:从入门到精通的AI对话艺术 —— 用一句话驯服千亿参数的“大脑“
人工智能
淡漠的蓝精灵24 分钟前
深度解析Weights & Biases:让AI实验管理变得如此简单
人工智能·其他·机器学习
七分小魔女31 分钟前
MySQL查看服务器/客户端版本
服务器·数据库·mysql