如何通过HTTP API新建Collection

本文介绍如何通过HTTP API创建一个新的Collection。


前提条件

Method与URL

HTTP

POST https://{Endpoint}/v1/collections

使用示例

说明

需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

创建单向量集合

Shell

# 创建一个名称为quickstart、向量维度为4、
# 向量数据类型为float(默认值)、
# 距离度量方式为dotproduct(内积)的Collection
# 并预先定义三个Field,名称为name、weight、age,数据类型分别为string、float、int

curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "name": "quickstart", 
    "dimension": 4, 
    "metric": "dotproduct", 
    "fields_schema": {
      "name": "STRING",
      "age": "INT",
      "weight": "FLOAT"
    }
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections

# example output:
# {"request_id":"19215409-ea66-4db9-8764-26ce2eb5bb99","code":0,"message":""}

创建多向量集合

curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "name": "multi_vector_demo", 
    "vectors_schema": {
      "title": {
        "dimension": 4
      },
      "content": {
        "dimension": 6,
        "metric": "dotproduct"
      }
    },
    "fields_schema": {
      "author": "STRING"
    }
}' https://YOUR_CLUSTER_ENDPOINT/v1/collections

# example output:
# {"request_id":"819b6ffe-bf44-42a4-8efa-a53a93d93bcd","code":0,"message":""}

入参描述

|-----------------------|--------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------|
| 参数 | Location | 类型 | 必填 | 说明 |
| {Endpoint} | path | str | 是 | Cluster的Endpoint,可在控制台Cluster详情中查看 |
| dashvector-auth-token | header | str | 是 | api-key |
| name | body | str | 是 | 待创建的Collection名称 |
| dimension | body | int | 是 | 向量维度,取值范围 (1, 20000] |
| dtype | body | str | 否 | 向量数据类型,"FLOAT"(默认)/"INT" |
| fields_schema | body | object | 否 | Fields定义 |
| metric | body | str | 否 | 距离度量方式,"euclidean"/"dotproduct"/"cosine"(默认) 值为cosine时,dtype必须为FLOAT |
| extra_params | body | object | 否 | 可选参数: * quantize_type:量化策略,详情参考向量动态量化 * auto_id: 自动生成主键,默认开启 |
| vectors_schema | body | object | 否 | 多个向量字段定义,类型为 Map<String, VectorParam>,详情参考多向量检索 |

说明

出参描述

|------------|--------|---------------------------------------------------------------------------------|--------------------------------------|
| 字段 | 类型 | 描述 | 示例 |
| code | int | 返回值,参考返回状态码说明 | 0 |
| message | str | 返回消息 | success |
| request_id | str | 请求唯一id | 19215409-ea66-4db9-8764-26ce2eb5bb99 |

相关推荐
⊙ ∀ ⊙4 分钟前
电脑充当树莓派屏幕(无线连接)
人工智能
Odoo老杨17 分钟前
Odoo:免费开源ERP的AI技术赋能出海企业电子商务应用介绍
人工智能·odoo·数字化转型·erp·企业信息化·出海企业
口_天_光健27 分钟前
两款轻量级数据库SQLite 和 TinyDB,简单!实用!
数据库·python·sqlite·非关系型数据库
notfindjob27 分钟前
sqlite加密-QtCipherSqlitePlugin 下
数据库·算法·sqlite
凡人的AI工具箱28 分钟前
每天40分玩转Django:Django部署
数据库·后端·python·算法·django
装不满的克莱因瓶28 分钟前
【Redis经典面试题一】如何解决Redis和数据库一致性的问题?
数据库·redis·缓存·一致性·延迟双删·双写一致性
woshilys34 分钟前
sql server msdb数据库备份恢复
数据库·sqlserver
play_big_knife1 小时前
鸿蒙项目云捐助第十六讲云捐助使用云数据库实现登录注册
数据库·华为云·harmonyos·鸿蒙·云开发·云数据库·鸿蒙开发
Srlua1 小时前
Llama2及法律判决分类实战
人工智能·python
火鸟21 小时前
Java 初学者的第一个 SpringBoot3.4.0 登录系统
数据库·通用代码生成器·编程初学者·第一个系统·电音之王·springboot3.4.0·java初学者