本文按照如下设计
ImageStitching_ExcessThree.py
python
from Stitcher import Stitcher
import cv2
import my_utils
# 只拼接两张图片
# 读取需要拼接的图片
# imageA_original = cv2.imread("left_01.png")
# imageB_original = cv2.imread("right_01.png")
imageA_original = cv2.imread("left_01.jpg")
imageB_original = cv2.imread("right_01.jpg")
imageC_original = cv2.imread("right_02.jpg")
# 图像预处理-改变图像大小
imageA = my_utils.resize(imageA_original,width=500)
imageB = my_utils.resize(imageB_original,width=500)
imageC = my_utils.resize(imageC_original,width=500)
# 把图片拼接成全景图
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
(result, vis) = stitcher.stitch([result, imageC], showMatches=True)
# 显示所有图片
stitcher.cv_show("Image A", imageA)
stitcher.cv_show("Image B", imageB)
stitcher.cv_show("Image C", imageC)
stitcher.cv_show("Keypoint Matches", vis)
stitcher.cv_show("Result", result)
ImageStitching_JustTwo.py
python
from Stitcher import Stitcher
import cv2
import my_utils
# 只拼接两张图片
# 读取需要拼接的图片
# imageA_original = cv2.imread("left_01.png")
# imageB_original = cv2.imread("right_01.png")
imageA_original = cv2.imread("left_01.jpg")
imageB_original = cv2.imread("right_01.jpg")
# 图像预处理-改变图像大小
imageA = my_utils.resize(imageA_original,width=500)
imageB = my_utils.resize(imageB_original,width=500)
# 把图片拼接成全景图
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
print(vis)
# 显示所有图片
stitcher.cv_show("Image A", imageA)
stitcher.cv_show("Image B", imageB)
stitcher.cv_show("Keypoint Matches", vis)
stitcher.cv_show("Result", result)
my_utils.py
python
import cv2
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
print('width is None', dim)
else:
r = width / float(w)
dim = (width, int(h * r))
print('height is None', dim)
resized = cv2.resize(image, dim, interpolation=inter)
return resized
python
import numpy as np
import cv2
class Stitcher:
# 拼接函数
def stitch(self, images, ratio=0.75, reprojThresh=4.0, showMatches=False):
# 获取图片
(imageB, imageA) = images
# 检测A,B图片的SIFT关键特征点,并且计算其特征描述子(特征向量)
(kpsA, featureA) = self.detectAndDescribe(imageA)
(kpsB, featureB) = self.detectAndDescribe(imageB)
# 匹配两张图片的所有特征点,返回匹配结果
M = self.matchKeypoints(kpsA, kpsB, featureA, featureB, ratio, reprojThresh)
# 如果返回结果为空,没有匹配成功的特征点,退出算法
if M is None:
return None
# 否则,提取匹配结果
# H是3x3视角变换矩阵
(matches, H, status) = M
# 将图片A进行视角变换,result是变换后图片
result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
# self.cv_show('result', result)
# 将图片B传入result图片最左端
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
# self.cv_show('result', result)
# 检测是否需要显示图片匹配
if showMatches:
# 生成匹配图片
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
# 返回结果
return (result, vis)
# 返回匹配结果
return result
# 获取图片关键点和特征描述子
def detectAndDescribe(self, img):
# 转灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 建立SIFT实例对象
descriptor = cv2.xfeatures2d.SIFT_create()
# 检测SIFT特征点并且计算描述子
(kps, feature) = descriptor.detectAndCompute(img, None)
# 并且将结果转换为Numpy数组
kps = np.float32([kp.pt for kp in kps])
# 返回特征点集合描述子
return (kps, feature)
# 匹配两张图片的特征点
def matchKeypoints(self, kpsA, kpsB, featureA, featureB, ratio, reprojThresh):
# 使用BF匹配
matcher = cv2.BFMatcher()
# 使用KNN来对A,B图的SIFT特征进行匹配
rawMatches = matcher.knnMatch(featureA, featureB, k=2)
# 获得较好的相匹配的特征(筛选特征点)
matches = []
for m in rawMatches:
# 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
# 存储两个点在featuresA, featuresB中的索引值
# DMatch.trainIdx - Index of the descriptor in train descriptors
# DMatch.queryIdx - Index of the descriptor in query descriptors
matches.append((m[0].trainIdx, m[0].queryIdx))
# 当筛选后的匹配对大于4时,计算视角变换矩阵
if len(matches) > 4:
# 获取匹配对的点的坐标
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# 计算视角变换矩阵
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
# 返回匹配结果和单应性矩阵和status
return (matches, H, status)
# 如果匹配对小于4时,返回None
return None
# 展示图片
def cv_show(self, name, img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# 初始化可视化图片,将A、B图左右连接到一起
print("Start draw Matching...")
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# 联合遍历,画出匹配对
for ((trainIdx, queryIdx), s) in zip(matches, status):
# 当点对匹配成功时,画到可视化图上
if s == 1:
# 画出匹配对
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# 返回可视化结果
return vis