AIGC:图像风格迁移技术实现猜想

定义以下函数:
f (image) -> (style, content)
g (style, content) -> image

函数f 将图片(image)分解成风格(style)和内容(content)两部分

函数g将风格(style)和内容(content)还原成图片(image)

给定训练集:图片集a(风格为style_a)、图片集b(风格为style_b)......

训练2个深度学习模型分别实现函数f 、函数g

个人觉得这样就可以实现图像风格迁移了,暂无时间验证,先记录下来

相关推荐
Godspeed Zhao1 小时前
自动驾驶中的传感器技术36——Lidar(11)
人工智能·机器学习·自动驾驶·全固态激光雷达
不老刘2 小时前
《生成式AI消费级应用Top 100——第五版》| a16z
人工智能·ai·chatgpt·a16z
墨风如雪3 小时前
AI Agent双雄争霸:OpenAI能说会道,xAI妙手生花!
aigc
此处不留情3 小时前
基于pytorch的垃圾分类识别项目实战
人工智能·pytorch
mit6.8243 小时前
[AI人脸替换] docs | 环境部署指南 | 用户界面解析
人工智能·python
fantasy_arch3 小时前
Pytorch超分辨率模型实现与详细解释
人工智能·pytorch·python
爱读源码的大都督5 小时前
小白LLM教程:不训练模型,如何进行微调?
java·人工智能·后端
大千AI助手5 小时前
接吻数问题:从球体堆叠到高维空间的数学奥秘
人工智能·agi·deepmind·接吻数·kissingnumber·牛顿·alphaevolve
程序猿小D5 小时前
【完整源码+数据集+部署教程】硬币分类与识别系统源码和数据集:改进yolo11-SWC
人工智能·yolo·计算机视觉·数据挖掘·数据集·yolo11·硬币分类与识别系统
西猫雷婶7 小时前
神经网络|(十六)概率论基础知识-伽马函数·中
人工智能·深度学习·神经网络·学习·机器学习·概率论