AIGC:图像风格迁移技术实现猜想

定义以下函数:
f (image) -> (style, content)
g (style, content) -> image

函数f 将图片(image)分解成风格(style)和内容(content)两部分

函数g将风格(style)和内容(content)还原成图片(image)

给定训练集:图片集a(风格为style_a)、图片集b(风格为style_b)......

训练2个深度学习模型分别实现函数f 、函数g

个人觉得这样就可以实现图像风格迁移了,暂无时间验证,先记录下来

相关推荐
新智元10 分钟前
全球 AI 视频大战升级!「中国版 Sora」Vidu Q2 参考生月底发布,能力对标 Sora 2
人工智能·openai
新智元24 分钟前
刚刚,Figure 03 惊天登场!四年狂造 10 万台,人类保姆集体失业
人工智能·openai
万猫学社26 分钟前
我们为什么需要Agent?
人工智能
共绩算力1 小时前
OpenAI Whisper 语音识别模型:技术与应用全面分析
人工智能·whisper·语音识别·共绩算力
工藤学编程1 小时前
零基础学AI大模型之Stream流式输出实战
人工智能
不良人龍木木1 小时前
机器学习-常用库
人工智能·机器学习
罗橙7号2 小时前
【pyTorch】关于PyTorch的高级索引机制理解
人工智能·pytorch·python
rengang662 小时前
09-随机森林:介绍集成学习中通过多决策树提升性能的算法
人工智能·算法·随机森林·机器学习·集成学习
Mintopia2 小时前
动态数据驱动的 AIGC 模型:Web 端实时更新训练的技术可行性
前端·javascript·aigc
zskj_qcxjqr2 小时前
数字大健康浪潮下:智能设备重构人力生态,传统技艺如何新生?
大数据·人工智能·科技·机器人