BERT outputs

Yes so BERT (the base model without any heads on top) outputs 2 things: last_hidden_state and pooler_output.

是的,BERT(顶部没有任何头部的基础模型)输出 2 个东西: last_hidden_state 和 pooler_output 。

First question: 第一个问题:

last_hidden_state contains the hidden representations for each token in each sequence of the batch. So the size is (batch_size, seq_len, hidden_size).

last_hidden_state 包含批次中每个序列中每个标记的隐藏表示。因此大小为 (batch_size, seq_len, hidden_size) 。

pooler_output contains a "representation" of each sequence in the batch, and is of size (batch_size, hidden_size). What it basically does is take the hidden representation of the [CLS] token of each sequence in the batch (which is a vector of size hidden_size), and then run that through the BertPooler nn.Module. This consists of a linear layer followed by a Tanh activation function. The weights of this linear layer are already pretrained on the next sentence prediction task (note that BERT is pretrained on 2 tasks: masked language modeling and next sentence prediction). I assume that the authors of the Transformers library have taken the weights from the original TF implementation, and initialized the layer with them. In theory, they would come from BertForPretraining - which is BERT with the 2 pretraining heads on top.

pooler_output 包含批次中每个序列的"表示",大小为 (batch_size, hidden_size) 。它的基本作用是获取批次中每个序列的 [CLS] 标记的隐藏表示(大小为 hidden_size 的向量),然后通过 BertPooler nn.Module 运行。这包括一个线性层,后跟一个 Tanh 激活函数。这个线性层的权重已经在下一个句子预测任务上进行了预训练(请注意,BERT 在 2 个任务上进行了预训练:掩码语言建模和下一个句子预测)。我假设 Transformers 库的作者已经从原始 TF 实现中获取了这个线性层的权重,并用它们初始化了该层。理论上,它们应该来自 BertForPretraining - 这是在顶部具有 2 个预训练头的 BERT。

Second question: 第二个问题:

Yes you can fine-tune them, just like the hidden states, because the weights of the linear layer are updated when you perform a loss.backward().

是的,您可以微调它们,就像隐藏状态一样,因为当您执行 loss.backward() 时,线性层的权重会被更新。

BTW, please ask questions related to BERT/other models (which are not related to bugs) on the forum, rather than posting them here.

顺便说一句,请在论坛上提出与 BERT/其他模型相关的问题(与错误无关),而不是在这里发布。

相关推荐
三块钱07945 分钟前
如何让AI视频模型(如Veo)开口说中文?一个顶级提示词的深度拆解
人工智能
轻松Ai享生活12 分钟前
从0-1学习CUDA | week 1
人工智能
蒋星熠14 分钟前
C++零拷贝网络编程实战:从理论到生产环境的性能优化之路
网络·c++·人工智能·深度学习·性能优化·系统架构
wayman_he_何大民18 分钟前
初始机器学习算法 - 关联分析
前端·人工智能
杭州泽沃电子科技有限公司25 分钟前
告别翻山越岭!智能监拍远程守护输电线路安全
运维·人工智能·科技·安全
wayman_he_何大民27 分钟前
初始机器学习算法 - 聚类分析
前端·人工智能
TDengine (老段)34 分钟前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
curdcv_po35 分钟前
😲AI 💪🏻超级 整合时代 已经 到来~
人工智能·trae
*星星之火*41 分钟前
【GPT入门】第47课 大模型量化中 float32/float16/uint8/int4 的区别解析:从位数到应用场景
人工智能·gpt
aneasystone本尊1 小时前
学习 Coze Studio 的工作流执行逻辑
人工智能