BERT outputs

Yes so BERT (the base model without any heads on top) outputs 2 things: last_hidden_state and pooler_output.

是的,BERT(顶部没有任何头部的基础模型)输出 2 个东西: last_hidden_state 和 pooler_output 。

First question: 第一个问题:

last_hidden_state contains the hidden representations for each token in each sequence of the batch. So the size is (batch_size, seq_len, hidden_size).

last_hidden_state 包含批次中每个序列中每个标记的隐藏表示。因此大小为 (batch_size, seq_len, hidden_size) 。

pooler_output contains a "representation" of each sequence in the batch, and is of size (batch_size, hidden_size). What it basically does is take the hidden representation of the [CLS] token of each sequence in the batch (which is a vector of size hidden_size), and then run that through the BertPooler nn.Module. This consists of a linear layer followed by a Tanh activation function. The weights of this linear layer are already pretrained on the next sentence prediction task (note that BERT is pretrained on 2 tasks: masked language modeling and next sentence prediction). I assume that the authors of the Transformers library have taken the weights from the original TF implementation, and initialized the layer with them. In theory, they would come from BertForPretraining - which is BERT with the 2 pretraining heads on top.

pooler_output 包含批次中每个序列的"表示",大小为 (batch_size, hidden_size) 。它的基本作用是获取批次中每个序列的 [CLS] 标记的隐藏表示(大小为 hidden_size 的向量),然后通过 BertPooler nn.Module 运行。这包括一个线性层,后跟一个 Tanh 激活函数。这个线性层的权重已经在下一个句子预测任务上进行了预训练(请注意,BERT 在 2 个任务上进行了预训练:掩码语言建模和下一个句子预测)。我假设 Transformers 库的作者已经从原始 TF 实现中获取了这个线性层的权重,并用它们初始化了该层。理论上,它们应该来自 BertForPretraining - 这是在顶部具有 2 个预训练头的 BERT。

Second question: 第二个问题:

Yes you can fine-tune them, just like the hidden states, because the weights of the linear layer are updated when you perform a loss.backward().

是的,您可以微调它们,就像隐藏状态一样,因为当您执行 loss.backward() 时,线性层的权重会被更新。

BTW, please ask questions related to BERT/other models (which are not related to bugs) on the forum, rather than posting them here.

顺便说一句,请在论坛上提出与 BERT/其他模型相关的问题(与错误无关),而不是在这里发布。

相关推荐
人工智能训练4 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海5 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor7 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19827 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了7 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队7 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒7 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6007 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房8 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20118 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习