BERT outputs

Yes so BERT (the base model without any heads on top) outputs 2 things: last_hidden_state and pooler_output.

是的,BERT(顶部没有任何头部的基础模型)输出 2 个东西: last_hidden_state 和 pooler_output 。

First question: 第一个问题:

last_hidden_state contains the hidden representations for each token in each sequence of the batch. So the size is (batch_size, seq_len, hidden_size).

last_hidden_state 包含批次中每个序列中每个标记的隐藏表示。因此大小为 (batch_size, seq_len, hidden_size) 。

pooler_output contains a "representation" of each sequence in the batch, and is of size (batch_size, hidden_size). What it basically does is take the hidden representation of the [CLS] token of each sequence in the batch (which is a vector of size hidden_size), and then run that through the BertPooler nn.Module. This consists of a linear layer followed by a Tanh activation function. The weights of this linear layer are already pretrained on the next sentence prediction task (note that BERT is pretrained on 2 tasks: masked language modeling and next sentence prediction). I assume that the authors of the Transformers library have taken the weights from the original TF implementation, and initialized the layer with them. In theory, they would come from BertForPretraining - which is BERT with the 2 pretraining heads on top.

pooler_output 包含批次中每个序列的"表示",大小为 (batch_size, hidden_size) 。它的基本作用是获取批次中每个序列的 [CLS] 标记的隐藏表示(大小为 hidden_size 的向量),然后通过 BertPooler nn.Module 运行。这包括一个线性层,后跟一个 Tanh 激活函数。这个线性层的权重已经在下一个句子预测任务上进行了预训练(请注意,BERT 在 2 个任务上进行了预训练:掩码语言建模和下一个句子预测)。我假设 Transformers 库的作者已经从原始 TF 实现中获取了这个线性层的权重,并用它们初始化了该层。理论上,它们应该来自 BertForPretraining - 这是在顶部具有 2 个预训练头的 BERT。

Second question: 第二个问题:

Yes you can fine-tune them, just like the hidden states, because the weights of the linear layer are updated when you perform a loss.backward().

是的,您可以微调它们,就像隐藏状态一样,因为当您执行 loss.backward() 时,线性层的权重会被更新。

BTW, please ask questions related to BERT/other models (which are not related to bugs) on the forum, rather than posting them here.

顺便说一句,请在论坛上提出与 BERT/其他模型相关的问题(与错误无关),而不是在这里发布。

相关推荐
Mintopia10 分钟前
开源AIGC模型对Web技术生态的影响与机遇 🌐✨
人工智能·aigc·敏捷开发
codetown11 分钟前
openai-go通过SOCKS5代理调用外网大模型
人工智能·后端
世优科技虚拟人23 分钟前
2026数字展厅设计核心关键,AI数字人交互大屏加速智慧展厅升级改造
人工智能·大模型·数字人·智慧展厅·展厅设计
艾莉丝努力练剑1 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
MobotStone1 小时前
数字沟通之道
人工智能·算法
Together_CZ1 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
caiyueloveclamp2 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
Aileen_0v02 小时前
【Gemini3.0的国内use教程】
android·人工智能·算法·开源·mariadb
xiaogutou11212 小时前
5款软件,让歌唱比赛海报设计更简单
人工智能
后端小张2 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构