BERT outputs

Yes so BERT (the base model without any heads on top) outputs 2 things: last_hidden_state and pooler_output.

是的,BERT(顶部没有任何头部的基础模型)输出 2 个东西: last_hidden_state 和 pooler_output 。

First question: 第一个问题:

last_hidden_state contains the hidden representations for each token in each sequence of the batch. So the size is (batch_size, seq_len, hidden_size).

last_hidden_state 包含批次中每个序列中每个标记的隐藏表示。因此大小为 (batch_size, seq_len, hidden_size) 。

pooler_output contains a "representation" of each sequence in the batch, and is of size (batch_size, hidden_size). What it basically does is take the hidden representation of the [CLS] token of each sequence in the batch (which is a vector of size hidden_size), and then run that through the BertPooler nn.Module. This consists of a linear layer followed by a Tanh activation function. The weights of this linear layer are already pretrained on the next sentence prediction task (note that BERT is pretrained on 2 tasks: masked language modeling and next sentence prediction). I assume that the authors of the Transformers library have taken the weights from the original TF implementation, and initialized the layer with them. In theory, they would come from BertForPretraining - which is BERT with the 2 pretraining heads on top.

pooler_output 包含批次中每个序列的"表示",大小为 (batch_size, hidden_size) 。它的基本作用是获取批次中每个序列的 [CLS] 标记的隐藏表示(大小为 hidden_size 的向量),然后通过 BertPooler nn.Module 运行。这包括一个线性层,后跟一个 Tanh 激活函数。这个线性层的权重已经在下一个句子预测任务上进行了预训练(请注意,BERT 在 2 个任务上进行了预训练:掩码语言建模和下一个句子预测)。我假设 Transformers 库的作者已经从原始 TF 实现中获取了这个线性层的权重,并用它们初始化了该层。理论上,它们应该来自 BertForPretraining - 这是在顶部具有 2 个预训练头的 BERT。

Second question: 第二个问题:

Yes you can fine-tune them, just like the hidden states, because the weights of the linear layer are updated when you perform a loss.backward().

是的,您可以微调它们,就像隐藏状态一样,因为当您执行 loss.backward() 时,线性层的权重会被更新。

BTW, please ask questions related to BERT/other models (which are not related to bugs) on the forum, rather than posting them here.

顺便说一句,请在论坛上提出与 BERT/其他模型相关的问题(与错误无关),而不是在这里发布。

相关推荐
前端娱乐圈4 分钟前
小程序语音识别功能 wx.createInnerAudioContext
人工智能·小程序·语音识别
100编程朱老师6 分钟前
Opencv 图像读取与保存问题
人工智能·opencv·计算机视觉
Ztop6 分钟前
注意!ChatGPT 全新 AI 图像功能延迟对免费用户开放
人工智能·chatgpt
塞大花27 分钟前
微软 GraphRAG 项目学习总结
人工智能·microsoft·语言模型·大语言模型·rag·knowledge graph·graphrag
wei_shuo32 分钟前
DeepSeek-R1 现已在 Amazon Bedrock 中作为完全托管的无服务器模型推出
人工智能·amazon
WHATEVER_LEO40 分钟前
【每日论文】DINeMo: Learning Neural Mesh Models with no 3D Annotations
人工智能·深度学习·神经网络·计算机视觉·3d·自然语言处理
潇湘馆记1 小时前
PyTorch optim包简介
人工智能·pytorch·python
群联云防护小杜1 小时前
AI赋能,防御无界:群联云防护如何颠覆传统DDoS防御格局?
网络·人工智能·网络协议·tcp/ip·安全·ddos
Gsen28191 小时前
AI大模型从0到1记录学习 day08
人工智能·神经网络·qt·机器学习·自然语言处理·分类·sklearn
邪恶的贝利亚1 小时前
如何快速看懂并修改神经网络
人工智能·深度学习·神经网络