<项目代码>YOLO Visdrone航拍目标识别<目标检测>

项目代码下载链接

<项目代码>YOLO Visdrone航拍目标识别<目标检测>https://download.csdn.net/download/qq_53332949/90163918YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情请阅读博主写的博客

<数据集>Visdrone数据集<目标检测>https://blog.csdn.net/qq_53332949/article/details/141462912

数据集下载链接:

下载链接https://download.csdn.net/download/qq_53332949/89713919?spm=1001.2101.3001.9500

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone

  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
  • Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
  • Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 F1_curve

3.5 识别效果图

相关推荐
诸神缄默不语27 分钟前
Python 3中的win32com使用教程+示例:从Excel读取数据生成Word格式报告批量发邮件
python·word·excel
草莓熊Lotso2 小时前
unordered_map/unordered_set 使用指南:差异、性能与场景选择
java·开发语言·c++·人工智能·经验分享·python·网络协议
stormsha2 小时前
裸眼3D原理浅析AI如何生成平面裸眼3D图像以科幻战士破框而出为例
人工智能·计算机视觉·平面·3d·ai
二川bro6 小时前
量子计算入门:Python量子编程基础
python
夏天的味道٥7 小时前
@JsonIgnore对Date类型不生效
开发语言·python
tsumikistep8 小时前
【前后端】接口文档与导入
前端·后端·python·硬件架构
顾道长生'8 小时前
(Arxiv-2025)ID-COMPOSER:具有分层身份保持的多主体视频合成
计算机视觉·音视频·composer
小白学大数据8 小时前
Python爬虫伪装策略:如何模拟浏览器正常访问JSP站点
java·开发语言·爬虫·python
一只侯子8 小时前
Face AE Tuning
图像处理·笔记·学习·算法·计算机视觉
Coding茶水间9 小时前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉