<项目代码>YOLO Visdrone航拍目标识别<目标检测>

项目代码下载链接

<项目代码>YOLO Visdrone航拍目标识别<目标检测>https://download.csdn.net/download/qq_53332949/90163918YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情请阅读博主写的博客

<数据集>Visdrone数据集<目标检测>https://blog.csdn.net/qq_53332949/article/details/141462912

数据集下载链接:

下载链接https://download.csdn.net/download/qq_53332949/89713919?spm=1001.2101.3001.9500

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone

  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
  • Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
  • Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 F1_curve

3.5 识别效果图

相关推荐
G皮T30 分钟前
【Python Cookbook】字符串和文本(五):递归下降分析器
数据结构·python·正则表达式·字符串·编译原理·词法分析·语法解析
独好紫罗兰1 小时前
洛谷题单3-P1420 最长连号-python-流程图重构
开发语言·python·算法
kingmax542120081 小时前
深入解析:使用Python爬取Bilibili视频
开发语言·python·音视频
程序员一诺1 小时前
【Flask开发】嘿马文学web完整flask项目第1篇:简介【附代码文档】
后端·python·flask·框架
Aerkui1 小时前
Python列表(List)深度解析
开发语言·python
Bruce_Liuxiaowei1 小时前
基于Flask的MBA考生成绩查询系统设计与实现
后端·python·flask
啊阿狸不会拉杆1 小时前
第二十章:Python-Matplotlib库实现函数可视化
开发语言·python·matplotlib
浪里小妖龙2 小时前
网络爬虫的基础知识
python
晓13132 小时前
第七章 Python基础进阶-异常、模块与包(其五)
人工智能·python
赖皮猫2 小时前
PIKIE-RAG 本地部署实践
后端·python·flask