20241230 基础数学-线性代数-(1)求解特征值(numpy, scipy)

所有代码实现,基于教程中的理论通过python实现出来的。效率不高,但有代码可以看。

由于scipy/sckitlearn/sparkx 底层的实现都被封装了(小白兔水平有限,fortran代码实在没看懂)这里的实现至少可以和理论公式对应的上。

1. 求特征值和特征向量

这是后面解线性方程的基础。解方程及拆分过程依赖eigVal,eigVec,很重要。

基本的解析法很好理解,所有的教程都有介绍。但是工程实现numpy等都是用的其他数值求解方法,这里实验了QR方法(水平有限,是最基础的QR),证明QR方法不难实现,并且有更多方法优化可以提高QR的数值稳定性和收敛效率(水平有限,placeholder,given旋转等,未研究)。

|--------|---------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| | 解析 | 解析 | 数值 |
| eig | polynomial | *symmetric matrix lanrange multiples | *symmetric matrix QR Iteration |
| 算法 | det(A-lambda*E)=0 解lambda的n次方程, 对应每个eigval[*]解齐次方程。 | 基于对称矩阵转标准二次型原理,A= (PN...P1) D (P1.T ... PN.T) eigVec=(PN...P1) eigVal=D | 1. 将A=QR,Q为规范正交矩阵,R为A在这个矩阵上的投影系数。 2. AK=RQ, 迭代k次, Q.T A= R, A1= Q.T A Q; ... Q1.T A1= R1; A2= Q1.T A1 Q1 = Q1.T Q.T A Q Q1 ... AK = (QK.T ... Q.T) A (Q ... QK ) //AK 就是特征值对角矩阵, Q...QK 就是特征向量 //AK为什么会收敛为对角矩阵,待研究//TODO eigVec=(PN...P1) eigVal=D |
| PYTHON | E00_eigVal_by_polynomial.py | P00_lagrange_mul_resolver00.py | E01_eigVal_by_qr_mm.py //*没有完全解决数值稳定性问题,devide0 等等;[URL]有大神写了QR算法文章,有更优的算法。 |

参考代码

​​​​​​参考代码: AITutorial02: AI初学,AI幼儿园练习

写在最后

* 线性代数理论及证明过程请参考教材。公式推理可以参考AI。感谢数学大师们。感谢《学兔兔》网。

相关推荐
muddjsv8 小时前
NumPy 常用工具:统计、排序、缺失值处理
numpy
muddjsv13 小时前
NumPy 核心运算:向量化与广播
numpy
muddjsv14 小时前
NumPy 实战:从基础到场景化应用
numpy
AI科技星16 小时前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
todoitbo18 小时前
从零搭建鲲鹏 HPC 环境:从朴素矩阵乘法到高性能实现
线性代数·矩阵·鲲鹏·昇腾
强化试剂18 小时前
荧光标记利器 Alkyne-PEG-FITC;FITC-PEG-Alkyne:核心优势与行业价值
python·flask·pyqt·scipy
你要飞18 小时前
Part 2 矩阵
笔记·线性代数·考研·矩阵
一条大祥脚19 小时前
26.1.2 两个数的数位dp 分段快速幂 dp预处理矩阵系数
线性代数·矩阵
A尘埃1 天前
Numpy常用方法介绍
numpy
byzh_rc1 天前
[认知计算] 专栏总结
线性代数·算法·matlab·信号处理