nlp初学者怎么入门?需要学习哪些?

入门姿势简单粗暴:打一些必要的基础就跑步进入Transformer。

大模型时代,传统的算法,像分词、词性标注,被替代得非常厉害,在入门阶段没必要花费太多精力在传统算法上面。

数学和编程基础

数学:

高数、线数、概率统计。大学水平就可以,如果基础差,可以后续边学边补。

Python:

语言推荐python,基本上绕不过去。不用学太深,掌握Python的基本语法、数据类型、控制结构(如循环和条件语句)、函数等就够了

推荐资源:b站小甲鱼

pytorch:

深度学习的主流框架之一。

推荐b站刘二大人《PyTorch深度学习实践》、我是土堆的《pytorch深度学习快速入门教程》

跑步进入Transformer

学习Transformer模型的基本架构和原理,包括自注意力机制、位置编码、多头注意力等等。

推荐资料:

吴恩达的deeplearning系列课程

斯坦福CS224-深度学习自然语言处理

李沐老师的《动手学深度学习》

都是经典,选自己能听得下去的听,完成作业,在这个过程中构建完整的知识体系版图。

Hugging Face Transformers:使用Hugging Face Transformers库来加载、训练、评估模型以及完成下游NLP任务。

预训练大语言模型

最近几年,随着gpt4,llama等带起的百模大战持续火热,预训练大模型这块的研究、应用和发展都受到了广泛的关注。尤其到了现今企业纷纷开始卷应用落地的时候,用人市场现状就是一方面有缺口,另一方面真正有全面项目落地经验的人才太少了。

像预训练大模型整套知识体系,包括常见的预训练模型、模型结构、主要的预训练任务等等,必须要有所侧重地学明白,无论是科研还是就业,都是重中之重。PEFT(Parameter-Efficient Fine-tuning)要学,有机会动手训一个大语言模型可行性比较低,但微调是每个人都可以实践的。另外就是要回langchain进行下游任务的开发。

项目实践

除了参加学校实验室的项目,做开源项目、参加实习都是获得项目实践机会的方法。还有就是参加竞赛。这些竞赛项目一般会提高提供基本的数据集以及要解决的问题,同时也会给出一些baseline代码作为参考,非常有助于入门学习。

1)Kaggle Kaggle大名鼎鼎的竞赛社区,有很多有意思的数据集和任务,可以通过参加Kaggle机器学习比赛来下载相关数据集。

2)天池大赛

阿里云举办的竞赛,完全来自真实业务场景。每场赛事沉淀的课题和数据集,在天池保留和开放。

国内的竞赛还有很多,和鲸,华为云,datafountain等。

大模型时代,考虑到成本和安全,在实际应用中,选择私有化部署一套自己的百亿量级的大模型的情况还是非常多的。因此项目实践中药着重锻炼的不但有编码能力,还有工程能力。

大量阅读经典论文,积累代码经验

阅读论文是获取知识和理解最新进展的重要途径。一个是细分领域的经典论文,包括baseline;另一个是前沿方案。针对论文中提到的陌生知识点,去有意识地学习;还可以通过关注论文的引用和参考文献来扩展阅读范围。

基础倒回来补 传统算法的基础知识对于模型可解释性、模型调试等方面具有重大意义。因此在掌握了Transformer等现代模型后,可以倒回来补充学习这些传统算法的基础知识,以达到更全面地理解NLP技术的本质和应用的目的。

为面试做准备 除了理论知识基础、项目经验、实习经验,按照当前的内卷形式,留出时间来专门准备面试是非常有必要的。可以尽可能多地过一些leetcode,多看一些面经分享。针对AIGC算法工程师方面,建议单做一份简历,真的香。

相关推荐
居然JuRan几秒前
从零开始学大模型之大语言模型
人工智能
扑克中的黑桃A2 分钟前
AI 对话高效输入指令攻略(一):了解AI对话指令
人工智能
算家计算14 分钟前
不止高刷!苹果发布会AI功能全面解析:实时翻译、健康监测重磅升级
人工智能·apple·资讯
m0_6770343527 分钟前
机器学习-异常检测
人工智能·深度学习·机器学习
张子夜 iiii1 小时前
实战项目-----在图片 hua.png 中,用红色画出花的外部轮廓,用绿色画出其简化轮廓(ε=周长×0.005),并在同一窗口显示
人工智能·pytorch·python·opencv·计算机视觉
胡耀超1 小时前
3.Python高级数据结构与文本处理
服务器·数据结构·人工智能·windows·python·大模型
索迪迈科技1 小时前
GPS汽车限速器有哪些功能?主要运用在哪里?
人工智能·行车记录仪·车辆安全·监控管理·gps定位
Niuguangshuo2 小时前
深度学习基本模块:Conv2D 二维卷积层
人工智能·深度学习
b***25112 小时前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
金井PRATHAMA2 小时前
AI赋能训诂学:解码古籍智能新纪元
人工智能·自然语言处理·知识图谱