nlp初学者怎么入门?需要学习哪些?

入门姿势简单粗暴:打一些必要的基础就跑步进入Transformer。

大模型时代,传统的算法,像分词、词性标注,被替代得非常厉害,在入门阶段没必要花费太多精力在传统算法上面。

数学和编程基础

数学:

高数、线数、概率统计。大学水平就可以,如果基础差,可以后续边学边补。

Python:

语言推荐python,基本上绕不过去。不用学太深,掌握Python的基本语法、数据类型、控制结构(如循环和条件语句)、函数等就够了

推荐资源:b站小甲鱼

pytorch:

深度学习的主流框架之一。

推荐b站刘二大人《PyTorch深度学习实践》、我是土堆的《pytorch深度学习快速入门教程》

跑步进入Transformer

学习Transformer模型的基本架构和原理,包括自注意力机制、位置编码、多头注意力等等。

推荐资料:

吴恩达的deeplearning系列课程

斯坦福CS224-深度学习自然语言处理

李沐老师的《动手学深度学习》

都是经典,选自己能听得下去的听,完成作业,在这个过程中构建完整的知识体系版图。

Hugging Face Transformers:使用Hugging Face Transformers库来加载、训练、评估模型以及完成下游NLP任务。

预训练大语言模型

最近几年,随着gpt4,llama等带起的百模大战持续火热,预训练大模型这块的研究、应用和发展都受到了广泛的关注。尤其到了现今企业纷纷开始卷应用落地的时候,用人市场现状就是一方面有缺口,另一方面真正有全面项目落地经验的人才太少了。

像预训练大模型整套知识体系,包括常见的预训练模型、模型结构、主要的预训练任务等等,必须要有所侧重地学明白,无论是科研还是就业,都是重中之重。PEFT(Parameter-Efficient Fine-tuning)要学,有机会动手训一个大语言模型可行性比较低,但微调是每个人都可以实践的。另外就是要回langchain进行下游任务的开发。

项目实践

除了参加学校实验室的项目,做开源项目、参加实习都是获得项目实践机会的方法。还有就是参加竞赛。这些竞赛项目一般会提高提供基本的数据集以及要解决的问题,同时也会给出一些baseline代码作为参考,非常有助于入门学习。

1)Kaggle Kaggle大名鼎鼎的竞赛社区,有很多有意思的数据集和任务,可以通过参加Kaggle机器学习比赛来下载相关数据集。

2)天池大赛

阿里云举办的竞赛,完全来自真实业务场景。每场赛事沉淀的课题和数据集,在天池保留和开放。

国内的竞赛还有很多,和鲸,华为云,datafountain等。

大模型时代,考虑到成本和安全,在实际应用中,选择私有化部署一套自己的百亿量级的大模型的情况还是非常多的。因此项目实践中药着重锻炼的不但有编码能力,还有工程能力。

大量阅读经典论文,积累代码经验

阅读论文是获取知识和理解最新进展的重要途径。一个是细分领域的经典论文,包括baseline;另一个是前沿方案。针对论文中提到的陌生知识点,去有意识地学习;还可以通过关注论文的引用和参考文献来扩展阅读范围。

基础倒回来补 传统算法的基础知识对于模型可解释性、模型调试等方面具有重大意义。因此在掌握了Transformer等现代模型后,可以倒回来补充学习这些传统算法的基础知识,以达到更全面地理解NLP技术的本质和应用的目的。

为面试做准备 除了理论知识基础、项目经验、实习经验,按照当前的内卷形式,留出时间来专门准备面试是非常有必要的。可以尽可能多地过一些leetcode,多看一些面经分享。针对AIGC算法工程师方面,建议单做一份简历,真的香。

相关推荐
IT_Beijing_BIT31 分钟前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.82437 分钟前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_1 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年1 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus2 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz2 小时前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究2 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习
门框研究员2 小时前
AI基础设施的临界点:算力、资本与政策的三重博弈
人工智能
罗西的思考2 小时前
【Agent】 ACE(Agentic Context Engineering)源码阅读笔记 ---(2)--- 训练
人工智能