评估大语言模型在药物基因组学问答任务中的表现:PGxQA

​这篇文献主要介绍了一个名为PGxQA的资源,用于评估大语言模型(LLM)在药物基因组学问答任务中的表现。

研究背景

药物基因组学(Pharmacogenomics, PGx)是精准医学中最有前景的领域之一,通过基因指导的治疗来提高药物的安全性和疗效。然而,由于缺乏教育和意识,PGx在临床中的应用进展缓慢。大语言模型(LLM)如GPT-4的引入,为开发能够提供及时信息的医疗聊天机器人提供了可能性。

研究目标

研究的主要目标是开发和评估一个名为PGxQA的资源,用于评估LLM在回答PGx相关问题时的表现。该资源旨在帮助临床医生、患者和研究人员更好地理解和利用PGx知识。

方法

自动问题生成:使用Python脚本从CPIC数据库中提取相关信息,并生成问题-答案对。

LLM查询:使用Python脚本将问题发送到本地或远程的LLM服务器,并收集LLM的回答。

手动问题生成:从实际临床和研究环境中收集问题,并手动整理成问题-答案对。

自动评分:开发了一系列自动评分函数来评估LLM的表现,包括数值评分、信息检索评分和文本相似度评分。

人工评审:招募PGx专家对LLM的回答进行人工评审,评估其准确性、完整性和安全性。

结果

自动评分结果:GPT-4在大多数评分指标上表现优异,特别是在数值回答和信息检索任务中表现出色。

人工评审结果:GPT-4的回答在准确性、完整性和安全性方面得分较高,但在某些问题上仍存在错误或危险的回答。

讨论

研究指出,LLM在处理PGx查询时存在一些局限性,如对数值回答的准确性较差、容易生成虚假信息等。为了解决这些问题,提出了几种改进方法,包括提示工程、微调和检索增强生成(RAG)。

结论

PGxQA为评估LLM在PGx任务中的表现提供了一个框架,并展示了GPT-4在这一领域的潜力。未来的研究将继续改进这一框架,以确保LLM在临床环境中的应用更加安全和有效。

欢迎关注"赛文AI药学"!

赛文AI药学,致力于探索人工智能在药学场景中的创新与应用,聚焦药师的AI赋能与专业素养提升。我们提供前沿的AI技术动态、实用的药学场景案例分享以及个性化学习资源,助力药师在智能化时代实现价值跃升。

相关推荐
carpell6 分钟前
【语义分割专栏】先导篇:常用数据集(VOC、Camvid、Cityscape、ADE20k、COCO)
人工智能·深度学习·计算机视觉·语义分割
带娃的IT创业者33 分钟前
《AI大模型应知应会100篇》第58篇:Semantic Kernel:微软的大模型应用框架
人工智能·microsoft·flask
泡芙萝莉酱1 小时前
各省份发电量数据(2005-2022年)-社科数据
大数据·人工智能·深度学习·数据挖掘·数据分析·毕业论文·数据统计
threelab1 小时前
02.three官方示例+编辑器+AI快速学习webgl_animation_skinning_blending
人工智能·学习·编辑器
wei_shuo3 小时前
OB Cloud 云数据库V4.3:SQL +AI全新体验
数据库·人工智能·sql
努力的搬砖人.4 小时前
AI生成视频推荐
人工智能
想要成为计算机高手4 小时前
Helix:一种用于通用人形控制的视觉语言行动模型
人工智能·计算机视觉·自然语言处理·大模型·vla
Mory_Herbert4 小时前
5.1 神经网络: 层和块
人工智能·深度学习·神经网络
Evand J6 小时前
MATLAB程序演示与编程思路,相对导航,四个小车的形式,使用集中式扩展卡尔曼滤波(fullyCN-EKF)
人工智能·算法
知来者逆7 小时前
在与大语言模型交互中的礼貌现象:技术影响、社会行为与文化意义的多维度探讨
人工智能·深度学习·语言模型·自然语言处理·llm