评估大语言模型在药物基因组学问答任务中的表现:PGxQA

​这篇文献主要介绍了一个名为PGxQA的资源,用于评估大语言模型(LLM)在药物基因组学问答任务中的表现。

研究背景

药物基因组学(Pharmacogenomics, PGx)是精准医学中最有前景的领域之一,通过基因指导的治疗来提高药物的安全性和疗效。然而,由于缺乏教育和意识,PGx在临床中的应用进展缓慢。大语言模型(LLM)如GPT-4的引入,为开发能够提供及时信息的医疗聊天机器人提供了可能性。

研究目标

研究的主要目标是开发和评估一个名为PGxQA的资源,用于评估LLM在回答PGx相关问题时的表现。该资源旨在帮助临床医生、患者和研究人员更好地理解和利用PGx知识。

方法

自动问题生成:使用Python脚本从CPIC数据库中提取相关信息,并生成问题-答案对。

LLM查询:使用Python脚本将问题发送到本地或远程的LLM服务器,并收集LLM的回答。

手动问题生成:从实际临床和研究环境中收集问题,并手动整理成问题-答案对。

自动评分:开发了一系列自动评分函数来评估LLM的表现,包括数值评分、信息检索评分和文本相似度评分。

人工评审:招募PGx专家对LLM的回答进行人工评审,评估其准确性、完整性和安全性。

结果

自动评分结果:GPT-4在大多数评分指标上表现优异,特别是在数值回答和信息检索任务中表现出色。

人工评审结果:GPT-4的回答在准确性、完整性和安全性方面得分较高,但在某些问题上仍存在错误或危险的回答。

讨论

研究指出,LLM在处理PGx查询时存在一些局限性,如对数值回答的准确性较差、容易生成虚假信息等。为了解决这些问题,提出了几种改进方法,包括提示工程、微调和检索增强生成(RAG)。

结论

PGxQA为评估LLM在PGx任务中的表现提供了一个框架,并展示了GPT-4在这一领域的潜力。未来的研究将继续改进这一框架,以确保LLM在临床环境中的应用更加安全和有效。

欢迎关注"赛文AI药学"!

赛文AI药学,致力于探索人工智能在药学场景中的创新与应用,聚焦药师的AI赋能与专业素养提升。我们提供前沿的AI技术动态、实用的药学场景案例分享以及个性化学习资源,助力药师在智能化时代实现价值跃升。

相关推荐
门框研究员5 分钟前
AI基础设施的临界点:算力、资本与政策的三重博弈
人工智能
罗西的思考25 分钟前
【Agent】 ACE(Agentic Context Engineering)源码阅读笔记 ---(2)--- 训练
人工智能
AKAMAI33 分钟前
AI推理硬件选型指南:CPU 与 GPU 的抉择
人工智能·云原生·云计算
wechat_Neal33 分钟前
智能网联汽车 HD map架构解析
人工智能·程序人生·敏捷开发
大大dxy大大36 分钟前
机器学习-KNN算法示例
人工智能·算法·机器学习
浮生了大白43 分钟前
AI 赋能科研实践:从选题到发表的技术重构之路
人工智能·重构
海思开发板总店1 小时前
RV1126B-P RV1126BP IMX415开发板源码rockchip开源AI网络摄像机源码原理图
人工智能
Imency2 小时前
win10本地部署weknora记录
人工智能·chatgpt
罗宇超MS2 小时前
汽车研发管理的数字化转型:从“流程驱动”到“价值驱动”
人工智能·汽车·alm
YangYang9YangYan2 小时前
高职新能源汽车技术专业职业发展指南
大数据·人工智能·数据分析·汽车