Pytorch分布式训练

现在深度学习模型占用显存大,数据量也大,单张显卡上训练已经满足不了要求了,只有多GPU并行训练才能加快训练速度;并行训练又分为模型并行和数据并行两种。模型并行比较少用到,这里主要介绍数据并行,pytorch中数据并行有两种DataParallel和DistributedDataParallel,前者是pytorch训练早期采用的,由于其单线程和显存利用率低等缺点,现在大多使用后者。


文章目录


1、并行训练

并行训练分两种,模型并行和数据并行。

1)模型并行。模型并行通常是指要训练的模型非常大,大到一块卡根本放不下,因而需要把模型进行拆分放到不同的卡上。例如早期的AlexNet就是拆分模型利用两块GPU训练的。

2)数据并行。数据并行通常用于训练数据非常庞大的时候,比如有几百万张图像用于训练模型。此时,如果只用一张卡来进行训练,那么训练时间就会非常的长。或者模型比较大,由于单卡显存的限制,训练时的batch size不能设置过大。这时就需要多个GPU训练来提升batchsize大小。

相关推荐
说私域1 分钟前
链动2+1模式AI智能名片S2B2C商城小程序中电商直播的应用机制与价值创新研究
人工智能·小程序
北邮刘老师1 分钟前
【智能体互联协议解析】身份码-智能体的身份证号
网络·人工智能·大模型·智能体·智能体互联网
Wulida00999114 分钟前
【目标检测】基于改进YOLOv13-C3k2-DWR的铲斗定位系统研究
人工智能·yolo·目标检测
Das116 分钟前
【计算机视觉】03_重采样
图像处理·人工智能·计算机视觉
湘-枫叶情缘28 分钟前
“智律提效”AI数字化运营落地项目可行性方案
大数据·人工智能·产品运营
却道天凉_好个秋28 分钟前
OpenCV(四十二):图像分割原理
人工智能·opencv·计算机视觉·图像分割
Coding茶水间32 分钟前
基于深度学习的水下海洋生物检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
KOYUELEC光与电子请努力拼搏~37 分钟前
AMAZINGIC晶焱科技:AI 驱动的车载革命:高速通信下的保护设计你准备好了吗?
人工智能·科技
禾从道37 分钟前
「杂想」未来的AI电子设备和胡思乱想。
人工智能·智能手机·创业创新·小米·豆包手机
HuggingFace41 分钟前
Codex 正在推动开源 AI 模型的训练与发布
人工智能