Pytorch分布式训练

现在深度学习模型占用显存大,数据量也大,单张显卡上训练已经满足不了要求了,只有多GPU并行训练才能加快训练速度;并行训练又分为模型并行和数据并行两种。模型并行比较少用到,这里主要介绍数据并行,pytorch中数据并行有两种DataParallel和DistributedDataParallel,前者是pytorch训练早期采用的,由于其单线程和显存利用率低等缺点,现在大多使用后者。


文章目录


1、并行训练

并行训练分两种,模型并行和数据并行。

1)模型并行。模型并行通常是指要训练的模型非常大,大到一块卡根本放不下,因而需要把模型进行拆分放到不同的卡上。例如早期的AlexNet就是拆分模型利用两块GPU训练的。

2)数据并行。数据并行通常用于训练数据非常庞大的时候,比如有几百万张图像用于训练模型。此时,如果只用一张卡来进行训练,那么训练时间就会非常的长。或者模型比较大,由于单卡显存的限制,训练时的batch size不能设置过大。这时就需要多个GPU训练来提升batchsize大小。

相关推荐
文心快码BaiduComate4 分钟前
全运会,用文心快码做个微信小程序帮我找「观赛搭子」
前端·人工智能·微信小程序
ChinaRainbowSea5 分钟前
13. Spring AI 的观测性
java·人工智能·后端·spring·flask·ai编程
2501_9411429310 分钟前
基于区块链的数字身份管理:探索安全与隐私的未来
网络·数据库·人工智能
骑猪兜风23322 分钟前
谷歌 AI IDE Antigravity 系统提示词分析
人工智能·ai编程·ai ide·gemini3·谷歌gemini3·antigravity
Jing_jing_X31 分钟前
ChatGPT 四种模式:普通对话、推理思考、深度研究、学习模式有什么区别?
人工智能·学习·chatgpt
汀、人工智能31 分钟前
AI Compass前沿速览:Gemini 3、Grok 4.1、GPT-5.1、千问、Lumine-3D开世界AI智能体
人工智能·gemini 3·grok4.1·gpt 5.1
用户51914958484532 分钟前
利用配置错误的postMessage()函数实现DOM型XSS攻击
人工智能·aigc
Valueyou241 小时前
引入基于加权 IoU 的 WiseIoU 回归损失以提升 CT 图像检测鲁棒性
人工智能·python·深度学习·目标检测
BestSongC1 小时前
基于VUE和FastAPI的行人目标检测系统
vue.js·人工智能·yolo·目标检测·fastapi