Pytorch分布式训练

现在深度学习模型占用显存大,数据量也大,单张显卡上训练已经满足不了要求了,只有多GPU并行训练才能加快训练速度;并行训练又分为模型并行和数据并行两种。模型并行比较少用到,这里主要介绍数据并行,pytorch中数据并行有两种DataParallel和DistributedDataParallel,前者是pytorch训练早期采用的,由于其单线程和显存利用率低等缺点,现在大多使用后者。


文章目录


1、并行训练

并行训练分两种,模型并行和数据并行。

1)模型并行。模型并行通常是指要训练的模型非常大,大到一块卡根本放不下,因而需要把模型进行拆分放到不同的卡上。例如早期的AlexNet就是拆分模型利用两块GPU训练的。

2)数据并行。数据并行通常用于训练数据非常庞大的时候,比如有几百万张图像用于训练模型。此时,如果只用一张卡来进行训练,那么训练时间就会非常的长。或者模型比较大,由于单卡显存的限制,训练时的batch size不能设置过大。这时就需要多个GPU训练来提升batchsize大小。

相关推荐
夏河始溢3 分钟前
一八零、AG-UI:构建AI前端交互的统一协议
前端·人工智能·ui
deep_drink5 分钟前
【经典论文精读(一)】Isomap:非线性降维的全局几何框架(Science 2000)
人工智能·算法·机器学习
羑悻的小杀马特7 分钟前
零成本神器组合:用Docker+Uptime Kuma+cpolar打造永不掉线的远程监控系统!
运维·人工智能·docker·容器
龙山云仓23 分钟前
No132:AI中国故事-对话老子——道法自然与AI设计:无为而治、柔弱胜刚强与复杂系统智慧
大数据·人工智能·机器学习
Data-Miner38 分钟前
类似Pandas AI的几个数据分析处理智能体介绍
人工智能·数据分析·pandas
TonyLee01743 分钟前
新型学习范式(机器学习)
人工智能·学习·机器学习
Deepoch44 分钟前
Deepoc具身大模型居家机器人:重新定义家庭智能服务新标准
人工智能·机器人·具身模型·deepoc·居家机器人·居家好物·智能居家
ucancode1 小时前
AI --> Mermaid --> 图形可视化 (UI)
人工智能·ui·ai·mermaid
小李AI飞刀^_^1 小时前
AlphaEarth Foundations:面向全球尺度的嵌入场模型
人工智能
KmBase1 小时前
【AI】从同构到多态:AGI的可能之路
人工智能·agi