Pytorch分布式训练

现在深度学习模型占用显存大,数据量也大,单张显卡上训练已经满足不了要求了,只有多GPU并行训练才能加快训练速度;并行训练又分为模型并行和数据并行两种。模型并行比较少用到,这里主要介绍数据并行,pytorch中数据并行有两种DataParallel和DistributedDataParallel,前者是pytorch训练早期采用的,由于其单线程和显存利用率低等缺点,现在大多使用后者。


文章目录


1、并行训练

并行训练分两种,模型并行和数据并行。

1)模型并行。模型并行通常是指要训练的模型非常大,大到一块卡根本放不下,因而需要把模型进行拆分放到不同的卡上。例如早期的AlexNet就是拆分模型利用两块GPU训练的。

2)数据并行。数据并行通常用于训练数据非常庞大的时候,比如有几百万张图像用于训练模型。此时,如果只用一张卡来进行训练,那么训练时间就会非常的长。或者模型比较大,由于单卡显存的限制,训练时的batch size不能设置过大。这时就需要多个GPU训练来提升batchsize大小。

相关推荐
子午8 分钟前
【2026原创】卫星遥感图像识别系统+Python+深度学习+人工智能+算法模型+TensorFlow
人工智能·python·深度学习
_ziva_8 分钟前
大模型分词算法全解析:BPE、WordPiece、SentencePiece 实战对比
人工智能·深度学习·自然语言处理
光锥智能13 分钟前
飞书钉钉AI硬件争夺战:录音背后的入口之争
人工智能·钉钉·飞书
跨境小渊15 分钟前
DeepBI Listing优化功能第一弹:对标竞品评分报告
人工智能
xixixi7777723 分钟前
解析 Claude模型 —— Anthropic公司打造,以安全性和推理能力为核心竞争力的顶尖大语言模型
人工智能·ai·语言模型·自然语言处理·大模型·claude·主流模型
大唐荣华31 分钟前
机器人落地“首台套”补贴,到底指什么?
人工智能·机器人
萤丰信息43 分钟前
数字经济与 “双碳” 战略双轮驱动下 智慧园区的智能化管理实践与未来演进
大数据·人工智能·科技·智慧城市·智慧园区
pingao14137844 分钟前
实时远程监控,4G温湿度传感器守护环境安全
大数据·人工智能·安全
shangjian0071 小时前
AI大模型-深度学习-卷积神经网络CNN
人工智能·神经网络·cnn
发哥来了1 小时前
主流AI视频生成商用方案选型:关键维度与成本效益分析
大数据·人工智能