Pytorch分布式训练

现在深度学习模型占用显存大,数据量也大,单张显卡上训练已经满足不了要求了,只有多GPU并行训练才能加快训练速度;并行训练又分为模型并行和数据并行两种。模型并行比较少用到,这里主要介绍数据并行,pytorch中数据并行有两种DataParallel和DistributedDataParallel,前者是pytorch训练早期采用的,由于其单线程和显存利用率低等缺点,现在大多使用后者。


文章目录


1、并行训练

并行训练分两种,模型并行和数据并行。

1)模型并行。模型并行通常是指要训练的模型非常大,大到一块卡根本放不下,因而需要把模型进行拆分放到不同的卡上。例如早期的AlexNet就是拆分模型利用两块GPU训练的。

2)数据并行。数据并行通常用于训练数据非常庞大的时候,比如有几百万张图像用于训练模型。此时,如果只用一张卡来进行训练,那么训练时间就会非常的长。或者模型比较大,由于单卡显存的限制,训练时的batch size不能设置过大。这时就需要多个GPU训练来提升batchsize大小。

相关推荐
一水鉴天1 分钟前
整体设计 定稿 备忘录仪表盘方案 之1 初稿之8 V5版本的主程序 之2: 自动化导航 + 定制化服务 + 个性化智能体(豆包助手)
前端·人工智能·架构
苏 凉4 分钟前
openEuler云原生AI性能测试:Qwen3模型KServe部署实战
人工智能·云原生
weixin_457760007 分钟前
深度学习的链式法则
人工智能·深度学习
狂奔solar8 分钟前
agent 自反馈实现用户triage feedback 自动化分析
运维·人工智能·自动化
微学AI8 分钟前
生成式AI应用平台架构设计:ModelEngine核心能力与工程化实践路径
android·人工智能·rxjava
老蒋新思维11 分钟前
创客匠人启示录:AI 时代知识变现的效率革命 —— 从人力驱动到智能体自动化的跃迁
网络·人工智能·网络协议·tcp/ip·数据挖掘·创始人ip·创客匠人
月亮!14 分钟前
IoT测试全解析:从嵌入式到云端的质量链条
运维·网络·人工智能·python·物联网·测试工具·自动化
shayudiandian16 分钟前
Hugging Face Transformers快速上手
人工智能
TextIn智能文档云平台19 分钟前
大语言模型怎么提取文档信息
人工智能·语言模型·自然语言处理