Pytorch分布式训练

现在深度学习模型占用显存大,数据量也大,单张显卡上训练已经满足不了要求了,只有多GPU并行训练才能加快训练速度;并行训练又分为模型并行和数据并行两种。模型并行比较少用到,这里主要介绍数据并行,pytorch中数据并行有两种DataParallel和DistributedDataParallel,前者是pytorch训练早期采用的,由于其单线程和显存利用率低等缺点,现在大多使用后者。


文章目录


1、并行训练

并行训练分两种,模型并行和数据并行。

1)模型并行。模型并行通常是指要训练的模型非常大,大到一块卡根本放不下,因而需要把模型进行拆分放到不同的卡上。例如早期的AlexNet就是拆分模型利用两块GPU训练的。

2)数据并行。数据并行通常用于训练数据非常庞大的时候,比如有几百万张图像用于训练模型。此时,如果只用一张卡来进行训练,那么训练时间就会非常的长。或者模型比较大,由于单卡显存的限制,训练时的batch size不能设置过大。这时就需要多个GPU训练来提升batchsize大小。

相关推荐
BeerBear35 分钟前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp
小气小憩1 小时前
“暗战”百度搜索页:Monica悬浮球被“围剿”,一场AI Agent与传统巨头的流量攻防战
前端·人工智能
神经星星1 小时前
准确度提升400%!印度季风预测模型基于36个气象站点,实现城区尺度精细预报
人工智能
IT_陈寒4 小时前
JavaScript 性能优化:5 个被低估的 V8 引擎技巧让你的代码快 200%
前端·人工智能·后端
Juchecar4 小时前
一文讲清 PyTorch 中反向传播(Backpropagation)的实现原理
人工智能
黎燃4 小时前
游戏NPC的智能行为设计:从规则驱动到强化学习的演进
人工智能
机器之心5 小时前
高阶程序,让AI从技术可行到商业可信的最后一公里
人工智能·openai
martinzh5 小时前
解锁RAG高阶密码:自适应、多模态、个性化技术深度剖析
人工智能
机器之心5 小时前
刚刚,李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代
人工智能·openai
scilwb5 小时前
Isaac Sim机械臂教程 - 阶段1:基础环境搭建与机械臂加载
人工智能·开源