Pytorch分布式训练

现在深度学习模型占用显存大,数据量也大,单张显卡上训练已经满足不了要求了,只有多GPU并行训练才能加快训练速度;并行训练又分为模型并行和数据并行两种。模型并行比较少用到,这里主要介绍数据并行,pytorch中数据并行有两种DataParallel和DistributedDataParallel,前者是pytorch训练早期采用的,由于其单线程和显存利用率低等缺点,现在大多使用后者。


文章目录


1、并行训练

并行训练分两种,模型并行和数据并行。

1)模型并行。模型并行通常是指要训练的模型非常大,大到一块卡根本放不下,因而需要把模型进行拆分放到不同的卡上。例如早期的AlexNet就是拆分模型利用两块GPU训练的。

2)数据并行。数据并行通常用于训练数据非常庞大的时候,比如有几百万张图像用于训练模型。此时,如果只用一张卡来进行训练,那么训练时间就会非常的长。或者模型比较大,由于单卡显存的限制,训练时的batch size不能设置过大。这时就需要多个GPU训练来提升batchsize大小。

相关推荐
葫三生16 分钟前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336391 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk4 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程5 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝5 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion7 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周7 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享8 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜8 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿8 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程