神经网络图像隐写术:用AI隐藏信息的艺术

🏡作者主页:点击!

🤖编程探索专栏:点击!

⏰️创作时间:2024年12月24日1点02分


神秘男子影,

秘而不宣藏。

泣意深不见,

男子自持重,

子夜独自沉。


论文源地址(有视频):

Aspiringcode - 编程抱负 即刻实现传知代码只专注开箱即用的代码https://www.aspiringcode.com/content?id=17210588505799&uid=bb6aa0ae6b3749868d1b2d4e61d1a208

论文概述

图像隐写术是一种在图片中隐藏消息的过程。虽然密码学等其他技术旨在防止对手阅读秘密消息,但隐写术旨在隐藏消息本身的存在。在本文中,我们提出了一种新的技术,用于使用生成对抗网络在图像中隐藏任意二进制数据,这使我们能够优化我们的模型生成的图像的感知质量。我们表明,我们的方法实现了每像素 4.4 位的最新有效载荷,逃避隐写分析工具的检测,并且对来自多个数据集的图像有效。为了实现公平比较,我们发布了一个在线可用的开源库

论文方法概述

封面图像 C 是从所有自然图像 PC 的概率分布中采样的。然后,隐写图像 Si 由学习的编码器 E(C, M ) 生成。然后通过学习的解码器 D(S) 提取秘密消息M。在训练当中,对信息的准确性和图片的质量(psnr)进行联合优化。

论文结构

整体结构主要分为三个部分,编码器,解码器,判别器

编码器接受一张CH W的图片,和一个DH W的一个二进制信息,输入到网络中,网络输出一个3HW的RGB图像作为信息承载的图片,将这个图片作为待传输的图片

解码器:由卷积网络构成,输入为编码器输出的图片,输出为浮点数构成的多维矩阵,这个矩阵和0比较进行二值化后形成二进制信息组成的矩阵,和原始信息M比较,判断信息恢复的准确度。

判别器:

为了对编码器的性能提供反馈并生成更真实的图像,我们引入了一个对抗性判别器。评论家网络由三个卷积块和一个输出通道的卷积层组成。为了生成标量分数,我们将自适应平均池化应用于卷积层的输出。

训练细节:文章采用MSE loss,BCE loss,进行训练,采用类似gan的对抗训练的方法

论文结果

演示效果

首先看一下隐写前后的效果:

input

output

同时可以解出隐藏的信息。

训练细节

核心逻辑

在这里可以粘贴您的核心代码逻辑:

复制代码
# start
console.log('wonderful')

1

2

使用方式

进入research文件夹,在jupyter 中运行相关的ipynb文件即可运行代码

部署方式

在这里描述您的服务部署方式

GPU python 3.6 pytorch1.7 注意不能版本太高!!!

相关推荐
Code_流苏9 分钟前
AI知识补全(十四):零样本学习与少样本学习是什么?
人工智能·元学习·少样本学习·零样本学习·语义嵌入
Yvette-W12 分钟前
ChatGPT 迎来 4o模型:更强大的图像生成能力与潜在风险
人工智能·chatgpt
Shockang12 分钟前
机器学习的一百个概念(5)数据增强
人工智能·机器学习
洁洁!15 分钟前
数据采集助力AI大模型训练
前端·人工智能·easyui
平平无奇科研小天才22 分钟前
scGPT环境安装
人工智能
xcLeigh29 分钟前
计算机视觉入门:从像素到理解的旅程
人工智能·python·opencv·计算机视觉
喾颛顼1 小时前
Mac下小智AI本地环境部署
人工智能·经验分享·macos
艾鹤1 小时前
ollama安装与使用
人工智能·llama
最新快讯1 小时前
科技快讯 | 中国首款全自研高性能RISC-V服务器芯片发布;亚马逊推出Nova Act跻身AI智能体赛道
人工智能·科技
Peter11467178501 小时前
服务器入门操作1(深度学习)
服务器·人工智能·笔记·深度学习·学习