LossMaskMatrix损失函数掩码矩阵

文章目录

  • [1. 理论](#1. 理论)
  • [2. python](#2. python)

1. 理论

A = [ 1 2 0 0 2 3 4 0 ] → B = [ 1 1 0 0 1 1 1 0 ] → C = [ 0.225 0.610 0 0 0.089 0.242 0.657 0 ] \begin{equation} A=\begin{bmatrix} 1&2&0&0\\\\ 2&3&4&0\end{bmatrix}\to B=\begin{bmatrix} 1&1&0&0\\\\ 1&1&1&0\end{bmatrix}\to C=\begin{bmatrix} 0.225&0.610&0&0\\\\ 0.089&0.242&0.657&0\end{bmatrix} \end{equation} A= 12230400 →B= 11110100 →C= 0.2250.0890.6100.24200.65700

2. python

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F

torch.set_printoptions(precision=3, sci_mode=False)


class MatrixNoneZero2OnesLike(object):
    def __init__(self, in_matrix):
        self.in_matrix = in_matrix
        self._result = torch.zeros_like(self.in_matrix)

    @property
    def result(self):
        my_result = torch.zeros_like(self.in_matrix)
        my_result_bool = self.in_matrix.to(torch.bool)
        self._result = my_result.masked_fill(my_result_bool, 1)
        return self._result


class LossMaskedMatrix(object):
    def __init__(self, src_matrix):
        self.src_matrix = src_matrix.to(torch.float)
        self.nonzero = MatrixNoneZero2OnesLike(self.src_matrix)
        self.nonzero_matrix = self.nonzero.result
        self._loss_matrix = torch.zeros_like(self.src_matrix)

    @property
    def loss_matrix(self):
        my_soft_matrix = F.softmax(self.src_matrix, dim=-1)
        my_loss_matrix = my_soft_matrix * self.nonzero_matrix
        print(f"*" * 50)
        print(f"src_matrix=\n{self.src_matrix}")
        print(f"nonzero_matrix=\n{self.nonzero_matrix}")
        print(f"loss_matrix=\n{my_loss_matrix}")
        print(f"*" * 50)
        self._loss_matrix = my_loss_matrix

        return self._loss_matrix


if __name__ == "__main__":
    in_matrix = torch.tensor([[1, 2, 0, 0], [2, 3, 4, 0]]).to(torch.float)
    test_loss_matrix = LossMaskedMatrix(in_matrix)
    result = test_loss_matrix.loss_matrix
  • 结果:
python 复制代码
**************************************************
src_matrix=
tensor([[1., 2., 0., 0.],
        [2., 3., 4., 0.]])
nonzero_matrix=
tensor([[1., 1., 0., 0.],
        [1., 1., 1., 0.]])
loss_matrix=
tensor([[0.225, 0.610, 0.000, 0.000],
        [0.089, 0.242, 0.657, 0.000]])
**************************************************
相关推荐
寻星探路6 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
聆风吟º9 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子9 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder9 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
智驱力人工智能9 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能57710 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
猫头虎10 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
h64648564h10 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切10 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
八零后琐话10 小时前
干货:程序员必备性能分析工具——Arthas火焰图
开发语言·python