了解智能运维

智能运维

(一)运维工作的转变

随着技术发展,运维工作从基础的搬机器、插网线、装系统等体力活儿,逐渐转变为更侧重服务器管理、代码管理、日志分析、监控告警、流量管理及故障排查等的脑力劳动。如今,运维人员拿到的通常是已装好系统、配置好IP和账号的服务器,工作重点也随之改变。

(二)云服务与虚拟化带来的挑战

公司业务扩张促使服务器增多,云服务和虚拟化技术广泛应用,运维工作变得复杂。不仅要管理服务器,还需关注容量管理、自动调整服务器数量、应对安全问题,以及处理因新容器和开源技术引发的故障。运维人员得学会运用各种工具解决这些新难题。

(三)智能运维的兴起

基于算法的智能运维应运而生,它利用数据和算法提升运维自动化与效率,例如合并报警信息、分析问题根源、关联分析、评估容量以及自动调整服务器数量等。其真正意义在于依托监控、服务台自动化,借助大数据和机器学习持续改进,突破人类能力极限。

(四)海量事件处理

  1. 数据分类方式
    • 实时数据与非实时数据。
    • 格式化数据与非格式化数据。
    • 需要索引的数据与只需要运算的数据。
    • 全量数据与抽样数据。
    • 可视化数据与告警数据。
  2. 多维度数据:复杂业务场景下,事件包含多维度信息,如时间、地点、服务器组件、错误码、业务线、服务接口等。支持多维度数据存储和查询分析是系统灵活性的重要衡量指标。
  3. 处理方法多样:处理复杂数据往往是设计问题,不同设计思路带来不同处理方式,实际操作中常混合使用多种存储介质和计算模型,如监控数据用实时数据库,分析报表用 MySQL,告警事件用 Redis,日志检索用 Elasticsearch 等。同时,要考虑数据源稳定性、API 适配能力及数据与展现分离,避免前端变更引发大量工作量。

(五)常见运维困境及应对

  1. 拒绝服务与信息过载:DDoS 攻击致使服务器被大量请求淹没,陷入拒绝服务状态;运维中告警信息过多,如监控指标剧增,人力难以巡检,引发信息过载。这都要求运维人员从海量信息里筛选有用内容,找出问题根源。
  2. 故障定位困难:业务模型或系统部署复杂,不同系统技术栈混杂,导致故障定位艰难。为此可采用日志标准化、全链路追踪、SLA 规范化等方法,让不同系统协同,助力智能化运维,同时不影响程序员使用习惯。
相关推荐
唐僧不爱八戒1 小时前
LibreOffice 自动化操作目录
运维·自动化
北京华人开创公司1 小时前
安徽京准:NTP网络时钟服务器功能及同步模式的介绍
运维·服务器·网络·时间同步·时钟同步·ntp时间服务器·时钟服务器
在下千玦2 小时前
#无类域间路由(快速复习版)
运维·服务器·网络
共享家95272 小时前
Linux权限管理:从入门到实践
linux·运维·服务器
卓豪终端管理2 小时前
黑白名单管理:构建安全高效的访问控制体系
运维·网络·安全·web安全·网络安全
霖檬ing2 小时前
PXE远程安装服务器
linux·运维
梦醒三叹2 小时前
自动化 Markdown 图片上传到 GitHub
运维·自动化·github
中云DDoS CC防护蔡蔡2 小时前
tcp/ip攻击及防范
运维·服务器·tcp/ip·网络安全·ddos
Z天蝎座3 小时前
从0到1构建工具站 - day6 (在线编程工具-docker)
运维·docker·容器
广药门徒3 小时前
esp32cam -> 服务器 | 手机 -> 服务器 直接服务器传输图片
运维·服务器·腾讯云