37 Opencv SIFT 特征检测

文章目录

  • [Ptr<SIFT> SIFT::create](#Ptr<SIFT> SIFT::create)
  • 示例

Ptr SIFT::create

c 复制代码
Ptr<SIFT> SIFT::create(
    int nfeatures = 0,
    int nOctaveLayers = 3,
    double contrastThreshold = 0.04,
    double edgeThreshold = 10,
    double sigma = 1.6 
);

参数说明:

    nfeatures:
        类型:int
        默认值:0
        描述:要保留的最大关键点数量。如果设置为 0 或负数,则不对关键点数量进行限制。

    nOctaveLayers:
        类型:int
        默认值:3
        描述:每个八度(octave)中的尺度层数量。这决定了金字塔每一层生成多少个尺度空间图像。更多的层意味着更精细的尺度变化检测。

    contrastThreshold:
        类型:double
        默认值:0.04
        描述:对比度阈值。只有当关键点的主曲率比这个阈值大时才会被保留。较高的值会减少检测到的关键点数量,但提高稳定性。较低的值则相反。

    edgeThreshold:
        类型:double
        默认值:10
        描述:边缘响应阈值。用于过滤掉那些位于边缘上的不稳定关键点。具体来说,它控制了Hessian矩阵两个特征值的比例。较小的值会导致更多的边缘点被保留,而较大的值则会更加严格地排除这些点。

    sigma:
        类型:double
        默认值:1.6
        描述:应用于初始图像的高斯模糊标准差。这是构建尺度空间金字塔的第一步,用来确保在不同尺度下的一致性。

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d.hpp> // 包含了OpenCV扩展功能模块,如SIFT等高级特征检测算法
#include <iostream>

using namespace cv;
using namespace std;
using namespace cv::xfeatures2d; // 使用cv::xfeatures2d命名空间以访问SIFT类

int main(int argc, char** argv) {
	// 加载灰度图像
	Mat src = imread("D:/vcprojects/images/test.png", IMREAD_GRAYSCALE);
	if (src.empty()) { // 检查是否成功加载图像
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE); // 创建一个窗口用于显示输入图像
	imshow("input image", src); // 显示输入图像

	// SIFT特征检测初始化
	int numFeatures = 400; // 设置SIFT算法要检测的最大特征点数量
	Ptr<SIFT> detector = SIFT::create(numFeatures); // 创建SIFT特征检测器实例
	vector<KeyPoint> keypoints; // 定义一个向量用于存储检测到的关键点
	detector->detect(src, keypoints, Mat()); // 在源图像中检测关键点,不使用掩码
	printf("Total KeyPoints : %d\n", keypoints.size()); // 打印检测到的总关键点数

	// 绘制关键点到图像
	Mat keypoint_img;
	drawKeypoints(src, keypoints, keypoint_img, Scalar::all(-1), DrawMatchesFlags::DEFAULT); // 绘制关键点,默认颜色,显示大小和方向
	namedWindow("SIFT KeyPoints", CV_WINDOW_AUTOSIZE); // 创建一个窗口用于显示带有关键点的图像
	imshow("SIFT KeyPoints", keypoint_img); // 显示带有关键点的图像

	waitKey(0); // 等待按键事件
	return 0;
}
相关推荐
九年义务漏网鲨鱼11 分钟前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间26 分钟前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享28 分钟前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾1 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码1 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5891 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien1 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松2 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_12 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫2 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain