软件老化分析

软件老化

++课程++:软件质量分析



作业



解答

Python代码如下:

python 复制代码
n = int(input("类别数:"))
theta = list(map(float, input("各个类别的权重:").split()))
m = list(map(int, input("各个类别的度量元数量:").split()))
R = []
BETA = []
for i in range(n):
    beta = list(map(float, input("第{0}个类别-各个度量元的权重:".format(i + 1)).split()))
    r = list(map(float, input("第{0}个类别-各个度量元的该时刻最大风险值:".format(i + 1)).split()))
    BETA.append(beta)
    R.append(r)

import math
Hs = []
Us = []
for i in range(n):
    H = 0
    for j in range(m[i]):
        H += BETA[i][j] * math.log10(R[i][j])
    U = max(10 * math.exp(-H), 1)
    Hs.append(H)
    Us.append(U)

print("各类别的熵:{0}".format(Hs))
print("各类别的可信值:{0}".format(Us))
T = 1
for i in range(n):
    T *= math.pow(Us[i], theta[i])
print("可信值:{0}".format(T))

运行结果如下:

python 复制代码
# 当t=0时
类别数: 5
各个类别的权重: 0.539 0.125 0.238 0.049 0.049
各个类别的度量元数量: 15 4 7 2 2
第1个类别-各个度量元的权重: 0.0506 0.1845 0.0238 0.0238 0.0774 0.0774 0.0774 0.0238 0.0238 0.0506 0.0506 0.0238 0.0238 0.1042 0.1845
第1个类别-各个度量元的该时刻最大风险值: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
第2个类别-各个度量元的权重: 0.25 0.25 0.25 0.25
第2个类别-各个度量元的该时刻最大风险值: 1 1 1 1
第3个类别-各个度量元的权重: 0.2340 0.1064 0.1064 0.2340 0.1064 0.1064 0.1064
第3个类别-各个度量元的该时刻最大风险值: 1 1 1 1 1 1 1
第4个类别-各个度量元的权重: 0.2 0.8
第4个类别-各个度量元的该时刻最大风险值: 1 1
第5个类别-各个度量元的权重: 0.1 0.9
第5个类别-各个度量元的该时刻最大风险值: 1 1
各类别的熵:[0.0, 0.0, 0.0, 0.0, 0.0]
各类别的可信值:[10.0, 10.0, 10.0, 10.0, 10.0]
可信值: 10.0

# 当t=10时
类别数: 5
各个类别的权重: 0.539 0.125 0.238 0.049 0.049
各个类别的度量元数量: 15 4 7 2 2
第1个类别-各个度量元的权重: 0.0506 0.1845 0.0238 0.0238 0.0774 0.0774 0.0774 0.0238 0.0238 0.0506 0.0506 0.0238 0.0238 0.1042 0.1845
第1个类别-各个度量元的该时刻最大风险值: 7 7 9 7 7 4 7 9 7 1 7 9 1 4 7
第2个类别-各个度量元的权重: 0.25 0.25 0.25 0.25
第2个类别-各个度量元的该时刻最大风险值: 7 7 7 9
第3个类别-各个度量元的权重: 0.2340 0.1064 0.1064 0.2340 0.1064 0.1064 0.1064
第3个类别-各个度量元的该时刻最大风险值: 7 10 7 9 4 10 4
第4个类别-各个度量元的权重: 0.2 0.8
第4个类别-各个度量元的该时刻最大风险值: 9 7
第5个类别-各个度量元的权重: 0.1 0.9
第5个类别-各个度量元的该时刻最大风险值: 7 9
各类别的熵: [0.7458799513127149, 0.8723841573705238, 0.8518824861842456, 0.8669269338992704, 0.9433280624968181]
各类别的可信值: [4.743167406123722, 4.1795389258142865, 4.266110860961348, 4.20240995313211, 3.893299624085329]
可信值: 4.481945667961918
相关推荐
winfredzhang4 分钟前
深入剖析 wxPython 配置文件编辑器
python·编辑器·wxpython·ini配置
多恩Stone12 分钟前
【3DV 进阶-9】Hunyuan3D2.1 中的 MoE
人工智能·pytorch·python·算法·aigc
爱打代码的小林14 分钟前
网络爬虫基础
爬虫·python
B站计算机毕业设计之家15 分钟前
大数据项目:基于python电商平台用户行为数据分析可视化系统 电商订单数据分析 Django框架 Echarts可视化 大数据技术(建议收藏)
大数据·python·机器学习·数据分析·django·电商·用户分析
weixin_4215850117 分钟前
静态图(Static Graph) vs 动态执行(Eager Execution)
python
杰瑞不懂代码31 分钟前
【公式推导】AMP算法比BP算法强在哪(二)
python·算法·机器学习·概率论
无垠的广袤32 分钟前
【工业树莓派 CM0 NANO 单板计算机】小智语音聊天
人工智能·python·嵌入式硬件·语言模型·树莓派·智能体·小智
BlackPercy39 分钟前
[Matplotlib] 动态视频生成
python·matplotlib
B站计算机毕业设计之家42 分钟前
大数据:基于python唯品会商品数据可视化分析系统 Flask框架 requests爬虫 Echarts可视化 数据清洗 大数据技术(源码+文档)✅
大数据·爬虫·python·信息可视化·spark·flask·唯品会
276695829243 分钟前
闪购商家端 mtgsig
java·python·c#·node·c·mtgsig·mtgsig1.2