软件老化分析

软件老化

++课程++:软件质量分析



作业



解答

Python代码如下:

python 复制代码
n = int(input("类别数:"))
theta = list(map(float, input("各个类别的权重:").split()))
m = list(map(int, input("各个类别的度量元数量:").split()))
R = []
BETA = []
for i in range(n):
    beta = list(map(float, input("第{0}个类别-各个度量元的权重:".format(i + 1)).split()))
    r = list(map(float, input("第{0}个类别-各个度量元的该时刻最大风险值:".format(i + 1)).split()))
    BETA.append(beta)
    R.append(r)

import math
Hs = []
Us = []
for i in range(n):
    H = 0
    for j in range(m[i]):
        H += BETA[i][j] * math.log10(R[i][j])
    U = max(10 * math.exp(-H), 1)
    Hs.append(H)
    Us.append(U)

print("各类别的熵:{0}".format(Hs))
print("各类别的可信值:{0}".format(Us))
T = 1
for i in range(n):
    T *= math.pow(Us[i], theta[i])
print("可信值:{0}".format(T))

运行结果如下:

python 复制代码
# 当t=0时
类别数: 5
各个类别的权重: 0.539 0.125 0.238 0.049 0.049
各个类别的度量元数量: 15 4 7 2 2
第1个类别-各个度量元的权重: 0.0506 0.1845 0.0238 0.0238 0.0774 0.0774 0.0774 0.0238 0.0238 0.0506 0.0506 0.0238 0.0238 0.1042 0.1845
第1个类别-各个度量元的该时刻最大风险值: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
第2个类别-各个度量元的权重: 0.25 0.25 0.25 0.25
第2个类别-各个度量元的该时刻最大风险值: 1 1 1 1
第3个类别-各个度量元的权重: 0.2340 0.1064 0.1064 0.2340 0.1064 0.1064 0.1064
第3个类别-各个度量元的该时刻最大风险值: 1 1 1 1 1 1 1
第4个类别-各个度量元的权重: 0.2 0.8
第4个类别-各个度量元的该时刻最大风险值: 1 1
第5个类别-各个度量元的权重: 0.1 0.9
第5个类别-各个度量元的该时刻最大风险值: 1 1
各类别的熵:[0.0, 0.0, 0.0, 0.0, 0.0]
各类别的可信值:[10.0, 10.0, 10.0, 10.0, 10.0]
可信值: 10.0

# 当t=10时
类别数: 5
各个类别的权重: 0.539 0.125 0.238 0.049 0.049
各个类别的度量元数量: 15 4 7 2 2
第1个类别-各个度量元的权重: 0.0506 0.1845 0.0238 0.0238 0.0774 0.0774 0.0774 0.0238 0.0238 0.0506 0.0506 0.0238 0.0238 0.1042 0.1845
第1个类别-各个度量元的该时刻最大风险值: 7 7 9 7 7 4 7 9 7 1 7 9 1 4 7
第2个类别-各个度量元的权重: 0.25 0.25 0.25 0.25
第2个类别-各个度量元的该时刻最大风险值: 7 7 7 9
第3个类别-各个度量元的权重: 0.2340 0.1064 0.1064 0.2340 0.1064 0.1064 0.1064
第3个类别-各个度量元的该时刻最大风险值: 7 10 7 9 4 10 4
第4个类别-各个度量元的权重: 0.2 0.8
第4个类别-各个度量元的该时刻最大风险值: 9 7
第5个类别-各个度量元的权重: 0.1 0.9
第5个类别-各个度量元的该时刻最大风险值: 7 9
各类别的熵: [0.7458799513127149, 0.8723841573705238, 0.8518824861842456, 0.8669269338992704, 0.9433280624968181]
各类别的可信值: [4.743167406123722, 4.1795389258142865, 4.266110860961348, 4.20240995313211, 3.893299624085329]
可信值: 4.481945667961918
相关推荐
Learn-Python8 小时前
MongoDB-only方法
python·sql
小途软件9 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚9 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
wanglei2007089 小时前
生产者消费者
开发语言·python
清水白石00810 小时前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
昵称已被吞噬~‘(*@﹏@*)’~10 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
2501_9418779810 小时前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
酩酊仙人10 小时前
fastmcp构建mcp server和client
python·ai·mcp
且去填词11 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
rgeshfgreh11 小时前
Python条件与循环实战指南
python