软件老化分析

软件老化

++课程++:软件质量分析



作业



解答

Python代码如下:

python 复制代码
n = int(input("类别数:"))
theta = list(map(float, input("各个类别的权重:").split()))
m = list(map(int, input("各个类别的度量元数量:").split()))
R = []
BETA = []
for i in range(n):
    beta = list(map(float, input("第{0}个类别-各个度量元的权重:".format(i + 1)).split()))
    r = list(map(float, input("第{0}个类别-各个度量元的该时刻最大风险值:".format(i + 1)).split()))
    BETA.append(beta)
    R.append(r)

import math
Hs = []
Us = []
for i in range(n):
    H = 0
    for j in range(m[i]):
        H += BETA[i][j] * math.log10(R[i][j])
    U = max(10 * math.exp(-H), 1)
    Hs.append(H)
    Us.append(U)

print("各类别的熵:{0}".format(Hs))
print("各类别的可信值:{0}".format(Us))
T = 1
for i in range(n):
    T *= math.pow(Us[i], theta[i])
print("可信值:{0}".format(T))

运行结果如下:

python 复制代码
# 当t=0时
类别数: 5
各个类别的权重: 0.539 0.125 0.238 0.049 0.049
各个类别的度量元数量: 15 4 7 2 2
第1个类别-各个度量元的权重: 0.0506 0.1845 0.0238 0.0238 0.0774 0.0774 0.0774 0.0238 0.0238 0.0506 0.0506 0.0238 0.0238 0.1042 0.1845
第1个类别-各个度量元的该时刻最大风险值: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
第2个类别-各个度量元的权重: 0.25 0.25 0.25 0.25
第2个类别-各个度量元的该时刻最大风险值: 1 1 1 1
第3个类别-各个度量元的权重: 0.2340 0.1064 0.1064 0.2340 0.1064 0.1064 0.1064
第3个类别-各个度量元的该时刻最大风险值: 1 1 1 1 1 1 1
第4个类别-各个度量元的权重: 0.2 0.8
第4个类别-各个度量元的该时刻最大风险值: 1 1
第5个类别-各个度量元的权重: 0.1 0.9
第5个类别-各个度量元的该时刻最大风险值: 1 1
各类别的熵:[0.0, 0.0, 0.0, 0.0, 0.0]
各类别的可信值:[10.0, 10.0, 10.0, 10.0, 10.0]
可信值: 10.0

# 当t=10时
类别数: 5
各个类别的权重: 0.539 0.125 0.238 0.049 0.049
各个类别的度量元数量: 15 4 7 2 2
第1个类别-各个度量元的权重: 0.0506 0.1845 0.0238 0.0238 0.0774 0.0774 0.0774 0.0238 0.0238 0.0506 0.0506 0.0238 0.0238 0.1042 0.1845
第1个类别-各个度量元的该时刻最大风险值: 7 7 9 7 7 4 7 9 7 1 7 9 1 4 7
第2个类别-各个度量元的权重: 0.25 0.25 0.25 0.25
第2个类别-各个度量元的该时刻最大风险值: 7 7 7 9
第3个类别-各个度量元的权重: 0.2340 0.1064 0.1064 0.2340 0.1064 0.1064 0.1064
第3个类别-各个度量元的该时刻最大风险值: 7 10 7 9 4 10 4
第4个类别-各个度量元的权重: 0.2 0.8
第4个类别-各个度量元的该时刻最大风险值: 9 7
第5个类别-各个度量元的权重: 0.1 0.9
第5个类别-各个度量元的该时刻最大风险值: 7 9
各类别的熵: [0.7458799513127149, 0.8723841573705238, 0.8518824861842456, 0.8669269338992704, 0.9433280624968181]
各类别的可信值: [4.743167406123722, 4.1795389258142865, 4.266110860961348, 4.20240995313211, 3.893299624085329]
可信值: 4.481945667961918
相关推荐
suoxiao77712 分钟前
通过anaconda安装jupyter
ide·python·jupyter
百锦再24 分钟前
MK米客方德SD NAND:无人机存储的高效解决方案
人工智能·python·django·sqlite·android studio·无人机·数据库开发
PacosonSWJTU34 分钟前
python使用matplotlib画图
开发语言·python·matplotlib
伶俐角少儿编程37 分钟前
2023年12月中国电子学会青少年软件编程(Python)等级考试试卷(六级)答案 + 解析
python·青少年编程·少儿编程·中国电子学会等级考试·中国电子学会
tangjunjun-owen1 小时前
Milvus 2.4 使用详解:从零构建向量数据库并实现搜索功能(Python 实战)
数据库·python·milvus·rag
CryptoRzz1 小时前
印度尼西亚数据源对接技术指南
开发语言·python·websocket·金融·区块链
戌崂石1 小时前
最优化方法Python计算:有约束优化应用——线性可分问题支持向量机
python·机器学习·支持向量机·最优化方法
灏瀚星空3 小时前
基于Python的量化交易实盘部署与风险管理指南
开发语言·python
Amo Xiang5 小时前
《100天精通Python——基础篇 2025 第18天:正则表达式入门实战,解锁字符串处理的魔法力量》
python·正则表达式·re