软件老化分析

软件老化

++课程++:软件质量分析



作业



解答

Python代码如下:

python 复制代码
n = int(input("类别数:"))
theta = list(map(float, input("各个类别的权重:").split()))
m = list(map(int, input("各个类别的度量元数量:").split()))
R = []
BETA = []
for i in range(n):
    beta = list(map(float, input("第{0}个类别-各个度量元的权重:".format(i + 1)).split()))
    r = list(map(float, input("第{0}个类别-各个度量元的该时刻最大风险值:".format(i + 1)).split()))
    BETA.append(beta)
    R.append(r)

import math
Hs = []
Us = []
for i in range(n):
    H = 0
    for j in range(m[i]):
        H += BETA[i][j] * math.log10(R[i][j])
    U = max(10 * math.exp(-H), 1)
    Hs.append(H)
    Us.append(U)

print("各类别的熵:{0}".format(Hs))
print("各类别的可信值:{0}".format(Us))
T = 1
for i in range(n):
    T *= math.pow(Us[i], theta[i])
print("可信值:{0}".format(T))

运行结果如下:

python 复制代码
# 当t=0时
类别数: 5
各个类别的权重: 0.539 0.125 0.238 0.049 0.049
各个类别的度量元数量: 15 4 7 2 2
第1个类别-各个度量元的权重: 0.0506 0.1845 0.0238 0.0238 0.0774 0.0774 0.0774 0.0238 0.0238 0.0506 0.0506 0.0238 0.0238 0.1042 0.1845
第1个类别-各个度量元的该时刻最大风险值: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
第2个类别-各个度量元的权重: 0.25 0.25 0.25 0.25
第2个类别-各个度量元的该时刻最大风险值: 1 1 1 1
第3个类别-各个度量元的权重: 0.2340 0.1064 0.1064 0.2340 0.1064 0.1064 0.1064
第3个类别-各个度量元的该时刻最大风险值: 1 1 1 1 1 1 1
第4个类别-各个度量元的权重: 0.2 0.8
第4个类别-各个度量元的该时刻最大风险值: 1 1
第5个类别-各个度量元的权重: 0.1 0.9
第5个类别-各个度量元的该时刻最大风险值: 1 1
各类别的熵:[0.0, 0.0, 0.0, 0.0, 0.0]
各类别的可信值:[10.0, 10.0, 10.0, 10.0, 10.0]
可信值: 10.0

# 当t=10时
类别数: 5
各个类别的权重: 0.539 0.125 0.238 0.049 0.049
各个类别的度量元数量: 15 4 7 2 2
第1个类别-各个度量元的权重: 0.0506 0.1845 0.0238 0.0238 0.0774 0.0774 0.0774 0.0238 0.0238 0.0506 0.0506 0.0238 0.0238 0.1042 0.1845
第1个类别-各个度量元的该时刻最大风险值: 7 7 9 7 7 4 7 9 7 1 7 9 1 4 7
第2个类别-各个度量元的权重: 0.25 0.25 0.25 0.25
第2个类别-各个度量元的该时刻最大风险值: 7 7 7 9
第3个类别-各个度量元的权重: 0.2340 0.1064 0.1064 0.2340 0.1064 0.1064 0.1064
第3个类别-各个度量元的该时刻最大风险值: 7 10 7 9 4 10 4
第4个类别-各个度量元的权重: 0.2 0.8
第4个类别-各个度量元的该时刻最大风险值: 9 7
第5个类别-各个度量元的权重: 0.1 0.9
第5个类别-各个度量元的该时刻最大风险值: 7 9
各类别的熵: [0.7458799513127149, 0.8723841573705238, 0.8518824861842456, 0.8669269338992704, 0.9433280624968181]
各类别的可信值: [4.743167406123722, 4.1795389258142865, 4.266110860961348, 4.20240995313211, 3.893299624085329]
可信值: 4.481945667961918
相关推荐
m0_748245522 分钟前
Python大数据可视化:基于python大数据的电脑硬件推荐系统_flask+Hadoop+spider
大数据·python·flask
m0_748237057 分钟前
Python毕业设计选题:基于python的酒店推荐系统_django+hadoop
python·django·课程设计
m0_7482540936 分钟前
100天精通Python(爬虫篇)——第113天:爬虫基础模块之urllib详细教程大全
开发语言·爬虫·python
小爬虫程序猿42 分钟前
深入理解Jsoup与Selenium:Java爬虫的双剑合璧
爬虫·python·selenium
随便写写44 分钟前
Pyside6 基础框架以及三种基础控件
python
夏娃同学1 小时前
基于Flask后端框架的均值填充
python·flask
HackKong1 小时前
Python与黑客技术
网络·python·web安全·网络安全·php
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用GNP针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python·深度学习·神经网络·计算机视觉
进击的小小学生1 小时前
多因子模型连载
大数据·python·数据分析·区块链
小码贾1 小时前
OpenCV-Python实战(6)——图相运算
人工智能·python·opencv