深度学习中的并行策略概述:4 Tensor Parallelism

深度学习中的并行策略概述:4 Tensor Parallelism

使用 PyTorch 实现 Tensor Parallelism 。首先定义了一个简单的模型 SimpleModel,它包含两个全连接层。然后,本文使用 torch.distributed.device_mesh 初始化了一个设备网格,这代表了本文想要使用的 GPU。接着,本文定义了一个 parallelize_plan,它指定了如何将模型的层分布到不同的 GPU 上。最后,本文使用 parallelize_module 函数将模型和计划应用到设备网格上,以实现张量并行。

bash 复制代码
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.distributed.tensor.parallel import ColwiseParallel, RowwiseParallel, parallelize_module

# 初始化分布式环境
def init_distributed_mode():
    dist.init_process_group(backend='nccl')

# 定义一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(10, 10)
        self.fc2 = nn.Linear(10, 5)

    def forward(self, x):
        x = self.fc1(x)
        x = self.fc2(x)
        return x

# 初始化模型并应用张量并行
def init_model_and_tensor_parallel():
    model = SimpleModel().cuda()
    tp_mesh = torch.distributed.device_mesh("cuda", (2,))  # 假设本文有2个GPU
    parallelize_plan = {
        "fc1": ColwiseParallel(),
        "fc2": RowwiseParallel(),
    }
    model = parallelize_module(model, tp_mesh, parallelize_plan)
    return model

# 训练函数
def train(model, dataloader):
    model.train()
    for data, target in dataloader:
        output = model(data.cuda())
        # 这里省略了损失计算和优化器步骤,仅为演示张量并行

# 主函数
def main():
    init_distributed_mode()
    model = init_model_and_tensor_parallel()
    batch_size = 32
    data_size = 100
    dataset = torch.randn(data_size, 10)
    target = torch.randn(data_size, 5)
    dataloader = torch.utils.data.DataLoader(list(zip(dataset, target)), batch_size=batch_size)

    train(model, dataloader)

if __name__ == '__main__':
    main()
相关推荐
开发者导航8 分钟前
【开发者导航】支持多存储方式的开源文件列表程序:OpenList
人工智能·学习·阿里云·信息可视化
GISer_Jing11 分钟前
前端学习总结——AI&主流前沿方向篇
前端·人工智能·学习
用户51914958484521 分钟前
cURL Kerberos FTP整数溢出漏洞分析与修复
人工智能·aigc
文火冰糖的硅基工坊22 分钟前
[嵌入式系统-108]:定昌电子DC-A588电路板介绍,一款基于瑞芯微RK3588芯片的高性能嵌入式AI边缘计算工控主机
人工智能·物联网·边缘计算
视***间30 分钟前
边缘计算重塑监控系统:从 “被动录像” 到 “主动智能” 的变革---视程空间
大数据·人工智能·边缘计算·ai算力·视程空间
song1502653729833 分钟前
视觉检测设备-AI视觉质量检测方案提升效率
人工智能·计算机视觉·视觉检测
hudawei9961 小时前
机器学习,深度学习,神经网络,Transformer的关系
深度学习·神经网络·机器学习
励志成为美貌才华为一体的女子1 小时前
每日学习内容简单汇总记录
人工智能
编程小白_正在努力中1 小时前
大语言模型后训练:解锁潜能的关键路径
人工智能·大语言模型
37手游后端团队1 小时前
揭秘ChatGPT“打字机”效果:深入理解SSE流式传输技术
人工智能·后端