深度学习中的并行策略概述:4 Tensor Parallelism

深度学习中的并行策略概述:4 Tensor Parallelism

使用 PyTorch 实现 Tensor Parallelism 。首先定义了一个简单的模型 SimpleModel,它包含两个全连接层。然后,本文使用 torch.distributed.device_mesh 初始化了一个设备网格,这代表了本文想要使用的 GPU。接着,本文定义了一个 parallelize_plan,它指定了如何将模型的层分布到不同的 GPU 上。最后,本文使用 parallelize_module 函数将模型和计划应用到设备网格上,以实现张量并行。

bash 复制代码
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.distributed.tensor.parallel import ColwiseParallel, RowwiseParallel, parallelize_module

# 初始化分布式环境
def init_distributed_mode():
    dist.init_process_group(backend='nccl')

# 定义一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(10, 10)
        self.fc2 = nn.Linear(10, 5)

    def forward(self, x):
        x = self.fc1(x)
        x = self.fc2(x)
        return x

# 初始化模型并应用张量并行
def init_model_and_tensor_parallel():
    model = SimpleModel().cuda()
    tp_mesh = torch.distributed.device_mesh("cuda", (2,))  # 假设本文有2个GPU
    parallelize_plan = {
        "fc1": ColwiseParallel(),
        "fc2": RowwiseParallel(),
    }
    model = parallelize_module(model, tp_mesh, parallelize_plan)
    return model

# 训练函数
def train(model, dataloader):
    model.train()
    for data, target in dataloader:
        output = model(data.cuda())
        # 这里省略了损失计算和优化器步骤,仅为演示张量并行

# 主函数
def main():
    init_distributed_mode()
    model = init_model_and_tensor_parallel()
    batch_size = 32
    data_size = 100
    dataset = torch.randn(data_size, 10)
    target = torch.randn(data_size, 5)
    dataloader = torch.utils.data.DataLoader(list(zip(dataset, target)), batch_size=batch_size)

    train(model, dataloader)

if __name__ == '__main__':
    main()
相关推荐
黄焖鸡能干四碗3 分钟前
智慧教育,智慧校园,智慧安防学校建设解决方案(PPT+WORD)
java·大数据·开发语言·数据库·人工智能
IMER SIMPLE3 分钟前
人工智能-python-深度学习-经典网络模型-LeNets5
人工智能·python·深度学习
却道天凉_好个秋10 分钟前
深度学习(五):过拟合、欠拟合与代价函数
人工智能·深度学习·过拟合·欠拟合·代价函数
亚马逊云开发者22 分钟前
Strands Agents SDK 助力翰德 Hudson 实现智能招聘新突破
人工智能
张较瘦_22 分钟前
[论文阅读] 人工智能 + 软件工程 | 大模型破局跨平台测试!LLMRR让iOS/安卓/鸿蒙脚本无缝迁移
论文阅读·人工智能·ios
IMER SIMPLE38 分钟前
人工智能-python-深度学习-神经网络-GoogLeNet
人工智能·python·深度学习
钮钴禄·爱因斯晨41 分钟前
深入剖析LLM:从原理到应用与挑战
开发语言·人工智能
InternLM1 小时前
专为“超大模型而生”,新一代训练引擎 XTuner V1 开源!
人工智能·开源·xtuner·书生大模型·大模型训练框架·大模型预训练·大模型后训练
JT8583961 小时前
AI GEO 优化能否快速提升网站在搜索引擎的排名?
人工智能·搜索引擎
幂律智能1 小时前
吾律——让普惠法律服务走进生活
人工智能·经验分享