矩阵的因子分解1-奇异值分解

文章目录

  • 矩阵的因子分解1-奇异值分解
    • 求法归纳
    • [例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解](#例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \ -1 & 0 \ 0 & 2 \ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解)
      • [1. 计算 A H A A^H A AHA 的特征值和特征向量](#1. 计算 A H A A^H A AHA 的特征值和特征向量)
      • [2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ](#2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ)
      • [3. 计算 A A H A A^H AAH 的特征值和特征向量](#3. 计算 A A H A A^H AAH 的特征值和特征向量)
      • [4. 构造分解结果](#4. 构造分解结果)

矩阵的因子分解1-奇异值分解

题型:对 A ∈ C m × n A \in \mathbb{C}^{m \times n} A∈Cm×n 进行奇异值分解 A = U Σ V H A = U \Sigma V^H A=UΣVH

题目中为简化计算,都是取 C m × n \mathbb{C}^{m\times n} Cm×n的特殊情形: R m × n \mathbb{R}^{m\times n} Rm×n,如下也是按照 R m × n \mathbb{R}^{m\times n} Rm×n 来展开的

求法归纳

  1. 求 A H A A^HA AHA 的特征值和特征向量 α 1 , α 2 , ... {\alpha_1,\alpha_2,\dots} α1,α2,...
    单位化 特征向量得到 V V V

  2. 用非零特征值求 :A A A 的奇异值将奇异值按从大到小的顺序排列并形成对角矩阵 Σ \Sigma Σ

  3. 求 A A H AA^H AAH 的特征值和特征向量 β 1 , β 2 , ... {\beta_1,\beta_2,\dots} β1,β2,...
    单位化 特征向量得到 U U U

  4. A = U ( Σ 0 0 0 ) V H A =U \begin{pmatrix} \Sigma&0\\ 0&0 \end{pmatrix} V^H A=U(Σ000)VH

注:

  • A H A A^HA AHA 和 A A H AA^H AAH 均为对称矩阵,特征值均非负且二者的非零特征值相同不同特征值对应的特征向量正交

  • 计算量大但推荐,不用通过 Gram-Schmidt 正交化方法补充单位向量

例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解

1. 计算 A H A A^H A AHA 的特征值和特征向量

A H A = ( 0 − 1 0 1 1 0 2 0 ) ( 0 1 − 1 0 0 2 1 0 ) = ( 2 0 0 5 ) A^H A = \begin{pmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} AHA=(01−100210) 0−1011020 =(2005)

特征值为:

λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \quad \lambda_2 = 2 λ1=5,λ2=2

对应的特征向量为:

α 1 = ( 0 1 ) , α 2 = ( 1 0 ) \alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} α1=(01),α2=(10)

将特征向量单位化:

v 1 = α 1 ∥ α 1 ∥ = ( 0 1 ) , v 2 = α 2 ∥ α 2 ∥ = ( 1 0 ) v_1 = \frac{\alpha_1}{\|\alpha_1\|} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad v_2 = \frac{\alpha_2}{\|\alpha_2\|} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} v1=∥α1∥α1=(01),v2=∥α2∥α2=(10)

V = ( 0 1 1 0 ) V = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} V=(0110)

2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ

奇异值是特征值的平方根
σ 1 = 5 , σ 2 = 2 \sigma_1 = \sqrt{5}, \quad \sigma_2 = \sqrt{2} σ1=5 ,σ2=2

Σ = ( 5 0 0 2 ) \Sigma = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \end{pmatrix} Σ=(5 002 )


3. 计算 A A H A A^H AAH 的特征值和特征向量

A A H = ( 0 1 − 1 0 0 2 1 0 ) ( 0 − 1 0 1 1 0 2 0 ) = ( 1 0 2 0 0 1 0 − 1 2 0 4 0 0 − 1 0 1 ) A A^H = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & 4 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} AAH= 0−1011020 (01−100210)= 1020010−120400−101

特征值为:

λ 1 = 5 , λ 2 = 2 , λ 3 = 0 , λ 4 = 0 \lambda_1 = 5, \quad \lambda_2 = 2, \quad \lambda_3 = 0, \quad \lambda_4 = 0 λ1=5,λ2=2,λ3=0,λ4=0

对应的特征向量为:

β 1 = ( 1 0 2 0 ) , β 2 = ( 0 − 1 0 1 ) , β 3 = ( 0 1 0 1 ) , β 4 = ( − 2 0 1 0 ) \beta_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad \beta_4 = \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \end{pmatrix} β1= 1020 ,β2= 0−101 ,β3= 0101 ,β4= −2010

将特征向量单位化:

u 1 = β 2 ∥ β 2 ∥ = ( 1 5 0 2 5 0 ) , u 2 = β 1 ∥ β 1 ∥ = ( 0 − 1 2 0 1 2 ) , u 3 = β 3 ∥ β 3 ∥ = ( 0 1 2 0 1 2 ) , u 4 = β 4 ∥ β 4 ∥ = ( − 2 5 0 1 5 0 ) u_1 = \frac{\beta_2}{\|\beta_2\|} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}, \quad u_2 = \frac{\beta_1}{\|\beta_1\|} = \begin{pmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \\ u_3 = \frac{\beta_3}{\|\beta_3\|} = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad u_4 = \frac{\beta_4}{\|\beta_4\|} = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}} \\ 0 \end{pmatrix} u1=∥β2∥β2= 5 105 20 ,u2=∥β1∥β1= 0−2 102 1 ,u3=∥β3∥β3= 02 102 1 ,u4=∥β4∥β4= −5 205 10

U = ( 1 5 0 0 − 2 5 0 − 1 2 1 2 0 2 5 0 0 1 5 0 1 2 1 2 0 ) U = \begin{pmatrix} \frac{1}{\sqrt{5}} & 0 & 0 & -\frac{2}{\sqrt{5}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{2}{\sqrt{5}} &0 & 0 & \frac{1}{\sqrt{5}} \\ 0 &\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} U= 5 105 200−2 102 102 102 1−5 205 10


4. 构造分解结果

根据奇异值分解公式:
A = U ( Σ 0 0 0 ) V H A = U \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} V^H A=U(Σ000)VH

其中:
Σ = ( 5 0 0 2 ) , ( Σ 0 0 0 ) = ( 5 0 0 2 0 0 0 0 ) \Sigma = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} Σ=(5 002 ),(Σ000)= 5 00002 00

因此,分解结果为:
A = U ( 5 0 0 2 0 0 0 0 ) V H A = U \begin{pmatrix} \sqrt{5} & 0\\ 0 & \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} V^H A=U 5 00002 00 VH

相关推荐
张晓~183399481214 小时前
数字人分身+矩阵系统聚合+碰一碰发视频: 源码搭建-支持OEM
线性代数·矩阵·音视频
山登绝顶我为峰 3(^v^)36 小时前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
微小冷15 小时前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
YuTaoShao1 天前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
luofeiju2 天前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio2 天前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
szekl2 天前
HDMI 2.0 4×2矩阵切换器412HN——多信号输入输出的高清解决方案
linux·矩阵·计算机外设·电脑·ekl
盛寒3 天前
矩阵的定义和运算 线性代数
线性代数
盛寒3 天前
初等变换 线性代数
线性代数
叶子爱分享3 天前
浅谈「线性代数的本质」 - 系列合集
线性代数