矩阵的因子分解1-奇异值分解

文章目录

  • 矩阵的因子分解1-奇异值分解
    • 求法归纳
    • [例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解](#例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \ -1 & 0 \ 0 & 2 \ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解)
      • [1. 计算 A H A A^H A AHA 的特征值和特征向量](#1. 计算 A H A A^H A AHA 的特征值和特征向量)
      • [2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ](#2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ)
      • [3. 计算 A A H A A^H AAH 的特征值和特征向量](#3. 计算 A A H A A^H AAH 的特征值和特征向量)
      • [4. 构造分解结果](#4. 构造分解结果)

矩阵的因子分解1-奇异值分解

题型:对 A ∈ C m × n A \in \mathbb{C}^{m \times n} A∈Cm×n 进行奇异值分解 A = U Σ V H A = U \Sigma V^H A=UΣVH

题目中为简化计算,都是取 C m × n \mathbb{C}^{m\times n} Cm×n的特殊情形: R m × n \mathbb{R}^{m\times n} Rm×n,如下也是按照 R m × n \mathbb{R}^{m\times n} Rm×n 来展开的

求法归纳

  1. 求 A H A A^HA AHA 的特征值和特征向量 α 1 , α 2 , ... {\alpha_1,\alpha_2,\dots} α1,α2,...
    单位化 特征向量得到 V V V

  2. 用非零特征值求 :A A A 的奇异值将奇异值按从大到小的顺序排列并形成对角矩阵 Σ \Sigma Σ

  3. 求 A A H AA^H AAH 的特征值和特征向量 β 1 , β 2 , ... {\beta_1,\beta_2,\dots} β1,β2,...
    单位化 特征向量得到 U U U

  4. A = U ( Σ 0 0 0 ) V H A =U \begin{pmatrix} \Sigma&0\\ 0&0 \end{pmatrix} V^H A=U(Σ000)VH

注:

  • A H A A^HA AHA 和 A A H AA^H AAH 均为对称矩阵,特征值均非负且二者的非零特征值相同不同特征值对应的特征向量正交

  • 计算量大但推荐,不用通过 Gram-Schmidt 正交化方法补充单位向量

例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解

1. 计算 A H A A^H A AHA 的特征值和特征向量

A H A = ( 0 − 1 0 1 1 0 2 0 ) ( 0 1 − 1 0 0 2 1 0 ) = ( 2 0 0 5 ) A^H A = \begin{pmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} AHA=(01−100210) 0−1011020 =(2005)

特征值为:

λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \quad \lambda_2 = 2 λ1=5,λ2=2

对应的特征向量为:

α 1 = ( 0 1 ) , α 2 = ( 1 0 ) \alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} α1=(01),α2=(10)

将特征向量单位化:

v 1 = α 1 ∥ α 1 ∥ = ( 0 1 ) , v 2 = α 2 ∥ α 2 ∥ = ( 1 0 ) v_1 = \frac{\alpha_1}{\|\alpha_1\|} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad v_2 = \frac{\alpha_2}{\|\alpha_2\|} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} v1=∥α1∥α1=(01),v2=∥α2∥α2=(10)

V = ( 0 1 1 0 ) V = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} V=(0110)

2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ

奇异值是特征值的平方根
σ 1 = 5 , σ 2 = 2 \sigma_1 = \sqrt{5}, \quad \sigma_2 = \sqrt{2} σ1=5 ,σ2=2

Σ = ( 5 0 0 2 ) \Sigma = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \end{pmatrix} Σ=(5 002 )


3. 计算 A A H A A^H AAH 的特征值和特征向量

A A H = ( 0 1 − 1 0 0 2 1 0 ) ( 0 − 1 0 1 1 0 2 0 ) = ( 1 0 2 0 0 1 0 − 1 2 0 4 0 0 − 1 0 1 ) A A^H = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & 4 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} AAH= 0−1011020 (01−100210)= 1020010−120400−101

特征值为:

λ 1 = 5 , λ 2 = 2 , λ 3 = 0 , λ 4 = 0 \lambda_1 = 5, \quad \lambda_2 = 2, \quad \lambda_3 = 0, \quad \lambda_4 = 0 λ1=5,λ2=2,λ3=0,λ4=0

对应的特征向量为:

β 1 = ( 1 0 2 0 ) , β 2 = ( 0 − 1 0 1 ) , β 3 = ( 0 1 0 1 ) , β 4 = ( − 2 0 1 0 ) \beta_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad \beta_4 = \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \end{pmatrix} β1= 1020 ,β2= 0−101 ,β3= 0101 ,β4= −2010

将特征向量单位化:

u 1 = β 2 ∥ β 2 ∥ = ( 1 5 0 2 5 0 ) , u 2 = β 1 ∥ β 1 ∥ = ( 0 − 1 2 0 1 2 ) , u 3 = β 3 ∥ β 3 ∥ = ( 0 1 2 0 1 2 ) , u 4 = β 4 ∥ β 4 ∥ = ( − 2 5 0 1 5 0 ) u_1 = \frac{\beta_2}{\|\beta_2\|} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}, \quad u_2 = \frac{\beta_1}{\|\beta_1\|} = \begin{pmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \\ u_3 = \frac{\beta_3}{\|\beta_3\|} = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad u_4 = \frac{\beta_4}{\|\beta_4\|} = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}} \\ 0 \end{pmatrix} u1=∥β2∥β2= 5 105 20 ,u2=∥β1∥β1= 0−2 102 1 ,u3=∥β3∥β3= 02 102 1 ,u4=∥β4∥β4= −5 205 10

U = ( 1 5 0 0 − 2 5 0 − 1 2 1 2 0 2 5 0 0 1 5 0 1 2 1 2 0 ) U = \begin{pmatrix} \frac{1}{\sqrt{5}} & 0 & 0 & -\frac{2}{\sqrt{5}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{2}{\sqrt{5}} &0 & 0 & \frac{1}{\sqrt{5}} \\ 0 &\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} U= 5 105 200−2 102 102 102 1−5 205 10


4. 构造分解结果

根据奇异值分解公式:
A = U ( Σ 0 0 0 ) V H A = U \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} V^H A=U(Σ000)VH

其中:
Σ = ( 5 0 0 2 ) , ( Σ 0 0 0 ) = ( 5 0 0 2 0 0 0 0 ) \Sigma = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} Σ=(5 002 ),(Σ000)= 5 00002 00

因此,分解结果为:
A = U ( 5 0 0 2 0 0 0 0 ) V H A = U \begin{pmatrix} \sqrt{5} & 0\\ 0 & \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} V^H A=U 5 00002 00 VH

相关推荐
CS创新实验室3 小时前
《机器学习数学基础》补充资料:过渡矩阵和坐标变换推导
人工智能·机器学习·矩阵·机器学习数学基础
蚂蚁质量3 小时前
在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
matlab·矩阵
mosquito_lover111 小时前
使用Python SciPy库来计算矩阵的RCS特征值并生成极坐标图
python·矩阵·scipy
一只_程序媛15 小时前
【leetcode hot 100 54】螺旋矩阵
windows·leetcode·矩阵
dorabighead16 小时前
小哆啦解题记:螺旋矩阵
算法·矩阵·力扣·大话算法
@心都19 小时前
机器学习数学基础:39.样本和隐含和残差协方差矩阵
算法·机器学习·矩阵
AIzealot无21 小时前
力扣hot 100之矩阵四题解法总结
算法·leetcode·矩阵
Helene19001 天前
Leetcode 378-有序矩阵中第 K 小的元素
算法·leetcode·矩阵
ChoSeitaku1 天前
NO.24十六届蓝桥杯备战|二维数组八道练习|杨辉三角|矩阵(C++)
c++·线性代数·矩阵
@ V:ZwaitY091 天前
TikTok矩阵系统介绍
矩阵