矩阵的因子分解1-奇异值分解

文章目录

  • 矩阵的因子分解1-奇异值分解
    • 求法归纳
    • [例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解](#例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \ -1 & 0 \ 0 & 2 \ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解)
      • [1. 计算 A H A A^H A AHA 的特征值和特征向量](#1. 计算 A H A A^H A AHA 的特征值和特征向量)
      • [2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ](#2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ)
      • [3. 计算 A A H A A^H AAH 的特征值和特征向量](#3. 计算 A A H A A^H AAH 的特征值和特征向量)
      • [4. 构造分解结果](#4. 构造分解结果)

矩阵的因子分解1-奇异值分解

题型:对 A ∈ C m × n A \in \mathbb{C}^{m \times n} A∈Cm×n 进行奇异值分解 A = U Σ V H A = U \Sigma V^H A=UΣVH

题目中为简化计算,都是取 C m × n \mathbb{C}^{m\times n} Cm×n的特殊情形: R m × n \mathbb{R}^{m\times n} Rm×n,如下也是按照 R m × n \mathbb{R}^{m\times n} Rm×n 来展开的

求法归纳

  1. 求 A H A A^HA AHA 的特征值和特征向量 α 1 , α 2 , ... {\alpha_1,\alpha_2,\dots} α1,α2,...
    单位化 特征向量得到 V V V

  2. 用非零特征值求 :A A A 的奇异值将奇异值按从大到小的顺序排列并形成对角矩阵 Σ \Sigma Σ

  3. 求 A A H AA^H AAH 的特征值和特征向量 β 1 , β 2 , ... {\beta_1,\beta_2,\dots} β1,β2,...
    单位化 特征向量得到 U U U

  4. A = U ( Σ 0 0 0 ) V H A =U \begin{pmatrix} \Sigma&0\\ 0&0 \end{pmatrix} V^H A=U(Σ000)VH

注:

  • A H A A^HA AHA 和 A A H AA^H AAH 均为对称矩阵,特征值均非负且二者的非零特征值相同不同特征值对应的特征向量正交

  • 计算量大但推荐,不用通过 Gram-Schmidt 正交化方法补充单位向量

例1. 对矩阵 A = ( 0 1 − 1 0 0 2 1 0 ) A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} A= 0−1011020 进行奇异值分解

1. 计算 A H A A^H A AHA 的特征值和特征向量

A H A = ( 0 − 1 0 1 1 0 2 0 ) ( 0 1 − 1 0 0 2 1 0 ) = ( 2 0 0 5 ) A^H A = \begin{pmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} AHA=(01−100210) 0−1011020 =(2005)

特征值为:

λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \quad \lambda_2 = 2 λ1=5,λ2=2

对应的特征向量为:

α 1 = ( 0 1 ) , α 2 = ( 1 0 ) \alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} α1=(01),α2=(10)

将特征向量单位化:

v 1 = α 1 ∥ α 1 ∥ = ( 0 1 ) , v 2 = α 2 ∥ α 2 ∥ = ( 1 0 ) v_1 = \frac{\alpha_1}{\|\alpha_1\|} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad v_2 = \frac{\alpha_2}{\|\alpha_2\|} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} v1=∥α1∥α1=(01),v2=∥α2∥α2=(10)

V = ( 0 1 1 0 ) V = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} V=(0110)

2. 将奇异值按从大到小排列,并构造对角矩阵 Σ \Sigma Σ

奇异值是特征值的平方根
σ 1 = 5 , σ 2 = 2 \sigma_1 = \sqrt{5}, \quad \sigma_2 = \sqrt{2} σ1=5 ,σ2=2

Σ = ( 5 0 0 2 ) \Sigma = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \end{pmatrix} Σ=(5 002 )


3. 计算 A A H A A^H AAH 的特征值和特征向量

A A H = ( 0 1 − 1 0 0 2 1 0 ) ( 0 − 1 0 1 1 0 2 0 ) = ( 1 0 2 0 0 1 0 − 1 2 0 4 0 0 − 1 0 1 ) A A^H = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & 4 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} AAH= 0−1011020 (01−100210)= 1020010−120400−101

特征值为:

λ 1 = 5 , λ 2 = 2 , λ 3 = 0 , λ 4 = 0 \lambda_1 = 5, \quad \lambda_2 = 2, \quad \lambda_3 = 0, \quad \lambda_4 = 0 λ1=5,λ2=2,λ3=0,λ4=0

对应的特征向量为:

β 1 = ( 1 0 2 0 ) , β 2 = ( 0 − 1 0 1 ) , β 3 = ( 0 1 0 1 ) , β 4 = ( − 2 0 1 0 ) \beta_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad \beta_4 = \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \end{pmatrix} β1= 1020 ,β2= 0−101 ,β3= 0101 ,β4= −2010

将特征向量单位化:

u 1 = β 2 ∥ β 2 ∥ = ( 1 5 0 2 5 0 ) , u 2 = β 1 ∥ β 1 ∥ = ( 0 − 1 2 0 1 2 ) , u 3 = β 3 ∥ β 3 ∥ = ( 0 1 2 0 1 2 ) , u 4 = β 4 ∥ β 4 ∥ = ( − 2 5 0 1 5 0 ) u_1 = \frac{\beta_2}{\|\beta_2\|} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}, \quad u_2 = \frac{\beta_1}{\|\beta_1\|} = \begin{pmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \\ u_3 = \frac{\beta_3}{\|\beta_3\|} = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad u_4 = \frac{\beta_4}{\|\beta_4\|} = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}} \\ 0 \end{pmatrix} u1=∥β2∥β2= 5 105 20 ,u2=∥β1∥β1= 0−2 102 1 ,u3=∥β3∥β3= 02 102 1 ,u4=∥β4∥β4= −5 205 10

U = ( 1 5 0 0 − 2 5 0 − 1 2 1 2 0 2 5 0 0 1 5 0 1 2 1 2 0 ) U = \begin{pmatrix} \frac{1}{\sqrt{5}} & 0 & 0 & -\frac{2}{\sqrt{5}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{2}{\sqrt{5}} &0 & 0 & \frac{1}{\sqrt{5}} \\ 0 &\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} U= 5 105 200−2 102 102 102 1−5 205 10


4. 构造分解结果

根据奇异值分解公式:
A = U ( Σ 0 0 0 ) V H A = U \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} V^H A=U(Σ000)VH

其中:
Σ = ( 5 0 0 2 ) , ( Σ 0 0 0 ) = ( 5 0 0 2 0 0 0 0 ) \Sigma = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} Σ=(5 002 ),(Σ000)= 5 00002 00

因此,分解结果为:
A = U ( 5 0 0 2 0 0 0 0 ) V H A = U \begin{pmatrix} \sqrt{5} & 0\\ 0 & \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} V^H A=U 5 00002 00 VH

相关推荐
Pipi_Xia_3 小时前
相切于球体上定点的平面
线性代数·算法·平面·几何学
Pipi_Xia_4 小时前
过圆外一点与圆相切的直线
线性代数·算法·平面·几何学
handsomeboysk4 小时前
Hessian 矩阵与函数的凸性
线性代数·矩阵
0~max~05 小时前
OpenGL入门最后一章观察矩阵(照相机)
c++·矩阵·游戏程序·图形渲染
云云3215 小时前
解锁手机矩阵的流量密码:云手机的奇幻之旅
服务器·线性代数·智能手机·矩阵·架构·facebook
云云3217 小时前
云手机 —— 手机矩阵的 “超级外挂
运维·服务器·线性代数·智能手机·矩阵
Ricciflows14 小时前
Peter Lax线性代数教材:Linear Algebra and Its Applications 2nd Ed
人工智能·学习·线性代数·机器学习·数学建模·矩阵
HEU_firejef16 小时前
面试经典150题——矩阵
面试·矩阵·哈希算法
owCode1 天前
矩阵的因子分解2-满秩分解
线性代数·矩阵
菜♕卷1 天前
day-102 二进制矩阵中的最短路径
线性代数·矩阵