Performance Tip: Specify Collection Capacity When Size is Known

When working with Java collections, their ability to grow dynamically is often valuable. Yet, if you already know the required size, specifying the initial capacity can be more efficient. Doing so may reduce CPU overhead and memory churn, resulting in smoother performance. In this article, we will explore why specifying capacity is beneficial, present practical examples, and highlight when you might consider alternatives such as immutable or fixed-size lists.

Efficient Use of ArrayList

Many developers rely on collections like ArrayList to handle dynamic workloads. However, frequent resizing can be costly. Each resizing operation may involve allocating a new underlying array and copying existing elements, which consumes CPU cycles and memory bandwidth. If you know how many elements you need, why not avoid these unnecessary steps?

When the final size of the list is known at the outset, setting the initial capacity can signal intent to future maintainers.

A Practical Example: Optimising ArrayList Usage

Consider the following example from java.lang.invoke.ClassSpecializer.Factory in Java 23. The method collects information from a list of methods:

ini 复制代码
// Tear apart transformMethods to get the names, types, and modifiers.
List<String> tns = new ArrayList<>();
List<MethodType> tts = new ArrayList<>();
List<Integer> tms = new ArrayList<>();
for (int i = 0; i < transformMethods.size(); i++) {
    MemberName tm = transformMethods.get(i);
    tns.add(tm.getName());
    final MethodType tt = tm.getMethodType();
    tts.add(tt);
    tms.add(tm.getModifiers());
}
TRANSFORM_NAMES = List.of(tns.toArray(new String[0]));
TRANSFORM_TYPES = List.of(tts.toArray(new MethodType[0]));
TRANSFORM_MODS = List.of(tms.toArray(new Integer[0]));

In this scenario, ArrayList expands as elements are appended. Since the size is known in advance, we can set the initial capacity and avoid repeated resizing:

ini 复制代码
int transformMethodCount = transformMethods.size();
List<String> tns = new ArrayList<>(transformMethodCount);
List<MethodType> tts = new ArrayList<>(transformMethodCount);
List<Integer> tms = new ArrayList<>(transformMethodCount);

for (int i = 0; i < transformMethodCount; i++) {
    MemberName tm = transformMethods.get(i);
    tns.add(tm.getName());
    tts.add(tm.getMethodType());
    tms.add(tm.getModifiers());
}

This approach reduces overhead. Yet, we can push it even further. If the end goal is merely to create arrays for List.of, we need not rely on ArrayList at all:

ini 复制代码
int transformMethodCount = transformMethods.size();

String[] methodNames = new String[transformMethodCount];
MethodType[] methodTypes = new MethodType[transformMethodCount];
Integer[] methodModifiers = new Integer[transformMethodCount];

for (int index = 0; index < transformMethodCount; index++) {
    MemberName transformMethod = transformMethods.get(index);
    methodNames[index] = transformMethod.getName();
    methodTypes[index] = transformMethod.getMethodType();
    methodModifiers[index] = transformMethod.getModifiers();
}

TRANSFORM_NAMES = List.of(methodNames);
TRANSFORM_TYPES = List.of(methodTypes);
TRANSFORM_MODS = List.of(methodModifiers);

By avoiding unnecessary intermediate ArrayList allocations, we streamline the code and improve performance.

Not All ArrayList Are the Same

There is another way to produce a list from an array, using Arrays.asList. However, this method returns a fixed-size list backed by the original array. This can be useful when the list is read-only, but it is not suitable for all scenarios.

scala 复制代码
// From java.util.Arrays
public static <T> List<T> asList(T... a) {
    return new ArrayList<>(a);
}

private static class ArrayList<E> extends AbstractList<E>
    implements RandomAccess, java.io.Serializable

This returned list is not a java.util.ArrayList but a specialised Arrays$ArrayList. It cannot change in size, which may be advantageous for certain read-only operations. However, it might not suit scenarios requiring mutability or dynamic growth.

Why Not Just Use List.of?

List.of is often preferred for fixed-size, immutable lists. It clearly expresses immutability and can simplify code. However, immutability may conflict with existing usage patterns, especially in legacy code that expects a mutable collection.

Example: Preserving Mutable Behaviour in ProcessBuilder

The constructor for java.lang.ProcessBuilder demonstrates an intentional use of mutable lists:

arduino 复制代码
public ProcessBuilder(String... command) {
    this.command = new ArrayList<>(command.length);
    for (String arg : command) {
        this.command.add(arg);
    }
}

This approach is mutable, allowing developers (though not recommended) to modify the command list after instantiation:

csharp 复制代码
ProcessBuilder pb = new ProcessBuilder("process", "-arg1");
// While this is possible, it is not recommended.
pb.command().add("-arg2");

If we replaced this with:

arduino 复制代码
public ProcessBuilder(String... command) {
    this.command = List.of(command);
}

We would produce an immutable list, changing the existing behaviour and potentially breaking backward compatibility. In this case, mutability aligns with established usage expectations.

Performance and Practical Trade-offs

Specifying capacity can yield measurable performance improvements. Although these gains may be modest, they become meaningful in high-throughput, latency-sensitive systems. Eliminating unnecessary copies, reducing allocation churn, and embracing immutability---or preserving mutability when needed---are all part of crafting a more efficient and flexible codebase.

Key Takeaways

  • Specify the initial capacity for collections when you know the final size. This can reduce overhead and make your intentions clearer.
  • Use List.of for immutable lists where it aligns with the API's needs, but be mindful of backward compatibility.
  • Consider whether you need a dynamically growing structure. If a known-size array suffices, it may be more efficient and straightforward.
  • Understand the distinctions between various list implementations, such as Arrays.asList, and select the one best suited to your scenario.

By judiciously choosing the right collection strategies, you can streamline your Java applications and foster performance and maintainability. How might you apply these techniques to your codebase? Share your experiences or thoughts, and consider experimenting with different approaches to discover what best meets your requirements.

original source: blog.vanillajava.blog/2024/12/per...

相关推荐
战族狼魂2 小时前
CSGO 皮肤交易平台后端 (Spring Boot) 代码结构与示例
java·spring boot·后端
杉之4 小时前
常见前端GET请求以及对应的Spring后端接收接口写法
java·前端·后端·spring·vue
hycccccch4 小时前
Canal+RabbitMQ实现MySQL数据增量同步
java·数据库·后端·rabbitmq
bobz9655 小时前
k8s 怎么提供虚拟机更好
后端
bobz9655 小时前
nova compute 如何创建 ovs 端口
后端
用键盘当武器的秋刀鱼6 小时前
springBoot统一响应类型3.5.1版本
java·spring boot·后端
Asthenia04126 小时前
从迷宫到公式:为 NFA 构造正规式
后端
Asthenia04127 小时前
像整理玩具一样:DFA 化简和状态等价性
后端
Asthenia04127 小时前
编译原理:打包思维-NFA 怎么变成 DFA
后端
非ban必选7 小时前
spring-ai-alibaba第五章阿里dashscope集成mcp远程天气查询tools
java·后端·spring