【教程】如何编译指定版本Spark

背景

我们目前在K8S集群中使用的spark是,基于kubeflow的Spark-Operator来运行的,对应的spark版本: 3.2.1

为啥要编译指定版本的Spark?

主要是需要读取一个消息队列的数据源, 看到有对应数据源spark读取的实现,有现成的。不过,是基于低版本spark 2.3的实现,想直接拿来用(果然没有现成的馅饼)。

结果: 悲剧了, 根本用不上。 还遇到一堆问题(不支持 On K8S、 spark operator的兼容性问题)

最终: 跑是跑起来了, 只能local模式。On K8S的问题有太多兼容性问题

所以,想着总结一下在这过程中遇到的问题

源码下载

Apache Spark, 选择对应的分支即可, 以下操作都以branch-2.3为例

准备工具

正式编译

假设你当前正在下载的spark根目录**${source_code_root}**

添加模块编译:

  • -Pkubernetes: 启用 Kubernetes 模块

编译命令如下:

./build/sbt  -Pkubernetes clean package

编译结果

在编译完成后,产生的结果如下:

  • 运行环境的jar包: {source_code_root}/assembly/target/scala-{scala_version}/jars

注意: 不同模块编译时,依赖生产的位置不同,最终都会放入这个jars目录下

  • spark-submit: ${source_code_root}/bin
  • spark-class: ${source_code_root}/bin
  • entrypoint.sh${source_code_root}/resource-managers/kubernetes/docker/src/main/dockerfiles/spark

运行程序

./bin/spark-submit \
    --master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
    --deploy-mode cluster \
    --name spark-pi \
    --class org.apache.spark.examples.SparkPi \
    --conf spark.executor.instances=5 \
    --conf spark.kubernetes.container.image=<spark-image> \
    local:///path/to/examples.jar

遇到的报错

  1. Exception in thread "main" org.apache.spark.SparkException: The Kubernetes mode does not yet support referencing application dependencies in the local file system.

解决方案: 不是spark的依赖jar的问题,是你需要提交的程序jar的问题,一般都是没有在需要运行的程序前面加: **local://**导致的

相关推荐
leisigoyle25 分钟前
【广州计算机学会、广州互联网协会联合主办 | ACM独立出版 | 高录用】第四届大数据、信息与计算机网络国际学术会议(BDICN 2025)
大数据·计算机网络
打码人的日常分享3 小时前
大数据治理,数字化转型运营平台建设方案(PPT完整版)
大数据·运维·系统安全·需求分析·设计规范·规格说明书
刘大猫266 小时前
《docker基础篇:8.Docker常规安装简介》包括:docker常规安装总体步骤、安装tomcat、安装mysql、安装redis
大数据·人工智能·docker
RPAdaren8 小时前
ChatGPT 与 AGI:人工智能的当下与未来走向全解析
大数据·人工智能·ai·chatgpt·机器人·agi·rpa
Apache Flink9 小时前
您有一份 Apache Flink 社区年度报告请查收~
大数据·flink·apache
JermeryBesian9 小时前
Flink源码解析之:如何根据StreamGraph生成JobGraph
大数据·flink
15年网络推广青哥9 小时前
TikTok矩阵运营:如何提高账号粉丝量?
大数据·人工智能·矩阵
jonyleek11 小时前
JVS低代码快速开发中“实体之间的关系”配置,表单引擎子表构建全攻略
java·大数据·低代码·开源·软件需求
Loving_enjoy12 小时前
计算机专业硕士有哪些研究方向
大数据·人工智能·计算机网络·机器学习·自然语言处理