【机器学习】回归

文章目录

    • [1. 如何训练回归问题](#1. 如何训练回归问题)
    • [2. 泛化能力](#2. 泛化能力)
    • [3. 误差来源](#3. 误差来源)
    • [4. 正则化](#4. 正则化)
    • [5. 交叉验证](#5. 交叉验证)

1. 如何训练回归问题

第一步:定义模型

  • 线性模型: y ^ = b + ∑ j w j x j \hat{y} = b + \sum_{j} w_j x_j y^=b+∑jwjxj
    • 其中,( w ) 是权重,( b ) 是偏差。

第二步:确定损失函数

  • 损失函数:实际值和预测值的差平方和
    L = ∑ i = 1 n ( y ^ i − ( b + ∑ j w j x i j ) ) 2 L = \sum_{i=1}^{n} (\hat{y}i - (b + \sum{j} w_j x_{ij}))^2 L=i=1∑n(y^i−(b+j∑wjxij))2

第三步:寻找最好的函数

目的:

  • 找到最好的函数,目的是找到参数 ( w ) 和 ( b ) 使损失函数最小。

方法:

  • 梯度下降法
    • 计算当前参数 ( w ) 和 ( b ) 的梯度。
    • 分别对 ( w ) 和 ( b ) 计算偏导数。
    • 更新参数:
      w ′ = w − η ⋅ ∂ L ∂ w , b ′ = b − η ⋅ ∂ L ∂ b w' = w - \eta \cdot \frac{\partial L}{\partial w}, \quad b' = b - \eta \cdot \frac{\partial L}{\partial b} w′=w−η⋅∂w∂L,b′=b−η⋅∂b∂L
      其中, η \eta η 是学习率。

说明:

  • 线性模型没有局部最优解,但学习率选择会影响参数是否能跨过最优解。

2. 泛化能力

欠拟合

  • 概念:没有训练到位,训练结果和测试结果都不好。
  • 原因:迭代次数少,模型过于简单。
  • 解决方法:引入新参数,提高模型复杂度。
  • 特点:偏差大,方差小。

过拟合

  • 概念:训练结果很好,但测试结果不好。
  • 原因:为了迎合训练数据,引入高次项,导致模型过于复杂,曲线变得过于曲折。
    • 权重影响模型的平滑度,方法影响的是上下平移。
  • 解决方法:
    • 增加训练数据,复杂模型更容易找到最好的函数。
    • 人工降维,减少模型复杂度。
    • 引入正则化参数,减小权重,使曲线平滑。
    • 使用 Dropout 和 Early Stop 等技术。
  • 特点:偏差小,方差大。

3. 误差来源

方差(Variance)

  • 定义:训练结果与训练结果平均值之间的方差。
  • 描述:反映了模型的抗扰动能力,训练结果的分散程度。

偏差(Bias)

  • 定义:训练结果与真实值的偏差。
  • 描述:刻画了模型的拟合能力,训练结果偏离正确结果的程度。

总结:

  • 模型简单:
    • Function set 小 → 方差小 → 偏差大 → 曲线平滑 → 欠拟合 → 通过调整模型复杂度解决。
  • 模型复杂:
    • Function set 大 → 方差大 → 偏差小 → 曲线陡峭 → 过拟合 → 通过正则化解决。

4. 正则化

目的

  • 在最小化损失函数的同时,减小权重的值。
  • 权重越小,曲线越平滑,输入变化对结果的影响较小。
  • 控制权重的更新,减小模型复杂度。

实现方法:

  • 在损失函数中加入正则化项: L reg = L + λ ∑ i w i 2 L_{\text{reg}} = L + \lambda \sum_{i} w_i^2 Lreg=L+λ∑iwi2
  • 其中, λ \lambda λ 是正则化参数,控制权重的大小
  • 因为要最小化Loss,所以权重也会被最小化

5. 交叉验证

定义:

  • 交叉验证:划分训练集和测试集,模拟测试结果的不可预测性,避免过拟合。

目的:

  • 使用验证集验证训练结果,并根据验证结果调整模型,确保泛化能力。

步骤:

  1. 将数据划分为训练集和验证集。
  2. 使用验证集模拟测试集,验证训练结果。
  3. 根据验证集上的表现调整模型。
  4. 使用整个训练集重新训练模型,得到最终的模型。

注意:

  • 验证集调整后,不应根据测试集的结果再做调整,即便你忍不住。

相关推荐
Alice_whj10 分钟前
AI云原生笔记
人工智能·笔记·云原生
Lyan-X12 分钟前
鲁鹏教授《计算机视觉与深度学习》课程笔记与思考 ——13. 生成模型 VAE:从无监督学习到显式密度估计的建模与实现
人工智能·笔记·深度学习·计算机视觉
AI_Auto13 分钟前
智能制造-MES与AI结合的核心价值与逻辑
大数据·人工智能·制造
聊聊科技20 分钟前
5款AI编曲软件荣登2026年度榜单,逐项对比适合原创音乐人参考
人工智能
董厂长20 分钟前
RAG 中的分块策略(Chunking Strategy)
人工智能·llm·rag·分块策略
皮卡丘不断更23 分钟前
让数据“开口说话”!SwiftBoot AI 智能看板 v0.1.8 震撼来袭
人工智能·系统架构·ai编程
向哆哆24 分钟前
七种常见虫子的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
AI浩27 分钟前
面向对象保真度的遥感图像生成扩散模型
人工智能·目标检测
CareyWYR29 分钟前
每周AI论文速递(260209-260213)
人工智能
小刘的大模型笔记1 小时前
向量数据库深度剖析:核心优劣势 + 适用场景,避开 RAG 落地的选型坑
数据库·人工智能·深度学习·机器学习