什么是大数据?2022大数据时代

  • 大数据概述

大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。

    1. 数据与数据分析

数据分析离不开数据。百科对数据(data)的定义:是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的原始素材。数据可以是连续的值,比如声音、图像,称为模拟数据;也可以是离散的,如符号、文字,称为数字数据。

数据分析是指用适当的统计分析方法对收集来的数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。

商业领域中,数据分析能够给帮助企业进行判断和决策,以便采取相应的策略与行动。例如,企业高层希望通过市场分析和研究,把握当前产品的市场动向,从而指定合理的产品研发和销售计划,这就必须依赖数据分析才能完成。生活中最著名的例子便是天气专家通过对气象数据进行分析,并且制作出天气预报,根据预报,我们会做出相应的策略,是带伞还是加件毛衣。

    1. 数据分析作用

数据分析的目的是把隐藏在数据背后的信息集中和提炼出来,总结出所研究对象的内在规律,帮助管理者进行有效的判断和决策。

数据分析在企业日常经营分析中主要有三大作用:

      1. 现状分析 (分析当下的数据)

简单来说就是告诉你当前的状况,具体体现在:

第一,告诉你企业现阶段的整体运营情况,通过各个指标的完成情况来衡量企业的运营状态,以说明企业整天运营是好了还是坏了,好的程度如何,坏的程度又到哪里。

第二,告诉你企业各项业务的构成,让你了解企业各项业务的发展以及变动情况,对企业运营状况有更深入的了解。

      1. 原因分析 (分析过去的数据)

简单来说就是告诉你某一现状为什么发生。

经过现状分析,我们对企业的运营情况有了基本了解,但不知道运营情况具体好在哪里,差在哪里,是什么原因引起的。这时就需要开展原因分析,以进一步确定业务变动的具体原因。

例如2020年2月运营收入下降50%,是什么原因导致的呢,是各项业务收入都出现下降,还是个别业务收入下降引起的,是各个地区业务收入都出现下降,还是个别地区业务收入下降引起的。这就需要我们开展原因分析,进一步确定收入下降的具体原因,对运营策略做出调整与优化。

      1. 预测分析 (结合数据预测未来)

简单来说就是告诉你将来会发生什么。

在了解企业运营现状后,有时还需要对企业未来发展趋势做出预测,为制订企业运营目标及策略提供有效的参考与决策依据,以保证企业的可持续健康发展。预测分析一般通过专题分析来完成,通常在制订企业季度、年度等计划时进行,其开展的频率没有现状分析及原因分析高。

    1. 数据 分析基本步骤

张文霖在《数据分析六步曲》说,典型的数据分析应该包含以下几个步骤:

      1. 明确分析目的和思路

首先明白本次的目的,梳理分析思路,并搭建整体分析框架,把分析目的分解,化为若干的点,清晰明了,即分析的目的,用户什么样的,如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。

同时,确保分析框架的体系化和逻辑性,简单来说就是先分析什么,后分析什么,使得各个分析点之间具有逻辑联系。避免不知从哪方面入手以及分析的内容和指标被质疑是否合理、完整。所以体系化就是为了让你的分析框架具有说服力。

要想使分析框架体系化,就需要一些营销、管理等理论为指导,结合着实际的业务情况进行构建,这样才能保证分析维度的完整性,分析结果的有效性以及正确性。比如以用户行为 理论 为指导,搭建的互联网网站分析指标框架如下:

跟数据分析相关的营销、管理等理论统称为数据分析方法论 。比如用户行为理论、PEST分析法、5W2H分析法等等。

      1. 数据收集

一般数据来源主要有以下几种方式:

数据库:每个公司都有自己的业务数据库,存放从公司成立以来产生的相关业务数据。这个业务数据库就是一个庞大的数据资源,需要有效地利用起来。

公开出版物:可以用于收集数据的公开出版物包括《中国统计年鉴》《中国社会统计年鉴》《中国人口统计年鉴》《世界经济年鉴》《世界发展报告》等统计年鉴或报告。

互联网:随着互联网的发展,网络上发布的数据越来越多,特别是搜索引擎可以帮助我们快速找到所需要的数据,例如国家及地方统计局网站、行业组织网站、政府机构网站、传播媒体网站、大型综合门户网站等上面都可能有我们需要的数据。

市场调查:进行数据分析时,需要了解用户的想法与需求,但是通过以上三种方式获得此类数据会比较困难,因此可以尝试使用市场调查的方法收集用户的想法和需求数据。

      1. 数据处理

数据处理是指对收集到的数据进行加工整理,形成适合数据分析的样式,它是数据分析前必不可少的阶段。数据处理的基本目的是从大量的、杂乱无章、难以理解的数据中,抽取并推导出对解决问题有价值、有意义的数据。

数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。一般拿到手的数据都需要进行一定的处理才能用于后续的数据分析工作,即使再"干净"'的原始数据也需要先进行一定的处理才能使用。

数据处理是数据分析的基础。通过数据处理,将收集到的原始数据转换为可以分析的形式,并且保证数据的一致性和有效性。

      1. 数据分析

数据分析是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。由于数据分析多是通过软件来完成的,这就要求数据分析师不仅要掌握各种数据分析方法,还要熟悉数据分析软件的操作。

数据挖掘其实是一种高级的数据分析方法,就是从大量的数据中挖掘出有用的信息,它是根据用户的特定要求,从浩如烟海的数据中找出所需的信息,以满足用户的特定需求。数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。一般来说,数据挖掘侧重解决四类数据分析问题:分类、聚类、关联和预测,重点在寻找模式和规律。数据分析与数据挖掘的本质是一样的,都是从数据里面发现关于业务的知识。

      1. 数据展现

一般情况下,数据是通过表格和图形的方式来呈现的,我们常说用图表说话就是这个意思。常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形,例如金字塔图、矩阵图、漏斗图等。

大多数情况下,人们更愿意接受图形这种数据展现方式,因为它能更加有效、直观地传递出分析所要表达的观点。记位,一般情况不,能用图说明问题的就不用表格,能用表格说明问题的就不要用文字。

      1. 报告撰写

数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,供决策者参考。

一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼 ,提供视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。

另外,数据分析报告需要有明确的结论,没有明确结论的分析称不上分析,同时也失去了报告的意义,因为我们最初就是为寻找或者求证一个结论才进行分析的,所以千万不要舍本求末。

最后,好的分析报告一定要有建议或解决方案。作为决策者,需要的不仅仅是找出问题,更重要的是建议或解决方案,以便他们做决策时作参考。所以,数据分析师不仅需要掌握数据分析方法,而且还要了解和熟悉业务,这样才能根据发现的业务问题,提出具有可行性的建议或解决方案。

    1. 大数据时代
      1. 概述

最早提出"大数据"时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:"数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。"

进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。

CCTV纪录片《大数据时代》,是国内首部大数据产业题材纪录片,节目细致而生动地讲述了大数据技术在政府治理、民生服务、数据安全、工业转型、未来生活等方面给我们带来的改变和影响。

      1. 海量数据 挑战

公开数据显示,互联网搜索巨头百度2013年拥有数据量接近EB级别。阿里、腾讯都声明自己存储的数据总量都达到了百PB以上。此外,电信、医疗、金融、公共安全、交通、气象等各个方面保存的数据量也都达到数十或者上百PB级别。全球数据量以每两年翻倍的速度增长,在2010年已经正式进入ZB时代,2020年全球数据总量达到44ZB。

究竟怎么去存储庞大的数据,是企业面临的首要问题。传统的数据存储模式存储容量是有大小限制或者空间限制的,怎么去设计出一个可以支撑大量数据的存储方案是开展数据分析的首要前提。

解决了海量数据的存储问题,接下来面临的海量数据的计算问题也是比较让人头疼,因为企业不仅追求可以计算,还会追求计算的速度、效率。

以目前互联网行业产生的数据量级别,要处理这些数据,就需要一个更好、更便捷的分析计算方式了。传统的数据处理方式显然力不从心,而且效率也会非常低下。这正是传统数据分析领域面临的另一个挑战,如何去分析、计算海量数据。

      1. 大数据的特点(5V 特征

Volume:数据量大,包括采集、存储和计算的量都非常大;

Variety:种类和来源多样化。包括结构化、半结构化和非结构化数据;

Value:数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵;

Velocity:数据增长速度快,处理速度也快,时效性要求高;

Veracity:数据的准确性和可信赖度,即数据的质量。

      1. 大数据的应用场景

电商方面:精准广告位,通过对用户的浏览行为,点击行为等进行大数据采集,分析,挖掘用户的二层三层喜欢,扩大产出。

传媒方面:猜你喜欢,通过对受众人群机型大数据分析,结合对应算法,对受众喜欢的进行交互推荐。

金融方面:理财投资,通过对个人的信用评估,风险承担能力评估,集合众多理财产品、推荐响应的投资理财产品。

交通方面:目前,交通的大数据应用主要在两个方面:一方面通过对车流量等海量数据的收集,估算,预测该路段一定时间内的车流量情况,给用户提供便利,合理进行道路规划;另一方面可以利用大数据来实现即时信号灯调度,提高已有线路通行能力。

电信方面:智慧营业厅,通过对用户当前的行为习惯、偏好,节假日的相应数据变化,调节自身业务结构,做到按需分配。

安防方面:人脸识别,通过人脸识别,匹配,存储用户数据,结合人工智能,分析及甄别用户行为,预防犯罪行为发生。

医疗方面:智慧医疗,通过对海量病例大数据的存储,匹配、检索、结合用户的饮食、行为等习惯,搭建智慧医疗体系。

    1. 分布式技术
      1. 什么是分布式

分布式系统是指:一个硬件或软件,其组件会分布在不同的计算机上,彼此之间仅仅通过网络消息传递进行通信和协调的系统。

简单来说就是一群独立计算机集合起来共同对外提供服务,但是对于系统的用户来说,就像是一台计算机在提供服务一样。

分布式意味着可以采用更多的普通计算机(相对于昂贵的大型机)组成分布式集群对外提供服务。计算机越多,CPU、内存、存储资源等也就越多,能够处理的并发访问量也就越大。

下面以网站架构变迁来举例说明。

初代的web服务网站架构往往比较简单,应用程序、数据库、文件等所有的资源都在一台服务器上。

图:现在互联网网站常用的架构

从分布式系统的概念中我们知道,各个主机之间通信和协调主要通过网络进行,所以,分布式系统中的计算机在空间上几乎没有任何限制,这些计算机可能被放在不同的机柜上,也可能被部署在不同的机房中,还可能在不同的城市中,对于大型的网站甚至可能分布在不同的国家和地区。

      1. 常用分布式方案

分布式应用和服务

将应用和服务进行分层和分割,然后将应用和服务模块进行分布式部署。这样做不仅可以提高并发访问能力、减少数据库连接和资源消耗,还能使不同应用复用共同的服务,使业务易于扩展。比如:分布式服务框架Dubbo。

分布式数据存储

大型网站常常需要处理海量数据,单台计算机往往无法提供足够的内存空间,可以对这些数据进行分布式存储。比如Apache Hadoop HDFS。

分布式计算

随着计算技术的发展,有些应用需要非常巨大的计算能力才能完成,如果采用集中式计算,需要耗费相当长的时间来完成。分布式计算将该应用分解成许多小的部分,分配给多台计算机进行处理。这样可以节约整体计算时间,大大提高计算效率。比如Apache Hadoop MapReduce。

      1. 分布式、集群

分布式 (distributed)是指在多台不同的服务器中部署不同的服务模块,通过远程调用协同工作,对外提供服务。

集群 (cluster)是指在多台不同的服务器中部署相同应用或服务模块,构成一个集群,通过负载均衡设备对外提供服务。

相关推荐
m0_748248236 分钟前
Springboot项目:使用MockMvc测试get和post接口(含单个和多个请求参数场景)
java·spring boot·后端
顾北辰208 分钟前
基本算法——回归
java·spring boot·机器学习
千禧年@1 小时前
Gateway服务网关
java·运维·gateway
阿松のblog1 小时前
蓝桥杯JAVA刷题--001
android·java·蓝桥杯
猿java1 小时前
SpringBoot自动配置的8个宝藏技巧!
java·后端·面试
起个随便的昵称1 小时前
安卓入门一 Java基础
android·java·开发语言
刘大猫262 小时前
《docker基础篇:8.Docker常规安装简介》包括:docker常规安装总体步骤、安装tomcat、安装mysql、安装redis
大数据·人工智能·docker
爱干饭的boy2 小时前
教师管理系统
java·开发语言·c++·windows·python·青少年编程
顾北辰202 小时前
基本算法——分类
java·spring boot·机器学习
儒道易行2 小时前
【网络安全实验室】SQL注入实战详情
java·数据库·安全·web安全·网络安全