qwenvl 以及qwenvl 2 模型架构理解

qwenvl 模型理解:

最近正好在做qwenvl 总结记录一下qwenvl 以及qwenvl2模型的架构,本文主要聚焦模型架构和训练技术,其他内容后面有涉及再补

注意:要了解qwenvl 2需要先理解qwenvl ,因为qwenvl 2文章明确提到qwenvl 2的架构是和qwenvl保持一致的

由于我主要关注模型架构,因此读论文的时候读完摘要直接看model architecture

qwenvl

架构图

qwenvl架构很简单,就是三个部分:

  • QwenLM: 作为Qwen-VL模型的基础组件,这个部分采用了一个大型语言模型,其初始权重来自于预训练的Qwen-7B模型。

    如果大家看一下代码的话,这个模型的结构和经典的llamma等大模型没什么区别

  • ViT: 在训练和推理过程中,输入图像被调整到特定的分辨率。视觉编码器通过将图像分成14步的小块来处理图像,生成一组图像特征。

  • Position-aware Vision-Language Adapter:

    为了缓解长图像特征序列带来的效率问题,Qwen-VL引入了一个压缩图像特征的视觉语言适配器。该适配器包括一个随机初始化的单层交叉注意模块。该模块使用一组可训练向量(Embeddings)作为query向量,并使用视觉编码器的图像特征作为交叉注意操作的关键。该机制将视觉特征序列压缩为256的固定长度。

qwenvl 2

文章作者明确了基础架构和qwenvl一样,主要有三个地方不同:

  • 朴素动态分辨率:

    引入 Naive Dynamic Resolution 机制,用 2D - RoPE 替代绝对位置嵌入,可处理任意分辨率图像并转换为不同数量视觉标记,减少高分辨率图像信息损失,推理时控制序列长度和视觉标记数量。

    Qwen2-VL 在架构上的一个关键改进是引入了朴素动态分辨率支持(Dehghani 等人,2024)。与 Qwen-VL 不同,Qwen2-VL 现在能够处理任意分辨率的图像 ,并将其动态转换为数量可变的视觉标记。为支持这一特性,我们对 ViT 进行了修改,移除了原来的绝对位置嵌入,并引入了 2D - RoPE来捕捉图像的二维位置信息。在推理阶段,不同分辨率的图像被打包成一个单一序列,通过控制打包长度来限制 GPU 内存使用。此外,为减少每个图像的视觉标记数量,在 ViT 之后使用一个简单的 MLP 层将相邻的 2×2 个标记压缩为一个标记,并在压缩后的视觉标记的开头和结尾放置特殊的 <|vision_start|> 和 <|vision_end|> 标记。因此,一张分辨率为 224×224、使用 patch_size = 14 的 ViT 编码的图像,在进入 LLM 之前会被压缩到 66 个标记。(224*224 / 14 / 14 / 2 / 2 =64, 64 + 2=66)

  • M - RoPE(Multimodal Rotary Position Embedding,多模态旋转位置嵌入)

    将旋转嵌入分解为时间、高度和宽度分量,有效编码多模态输入位置信息,提升模型对长序列的处理能力。

    这是 Qwen2 - VL 模型中的一项重要创新技术,主要用于有效编码多模态输入的位置信息,在提升模型性能方面发挥关键作用。

    结构与原理:与传统大语言模型(LLMs)中仅能编码一维位置信息的 1D - RoPE 不同,**M - RoPE 将原始旋转嵌入分解为三个分量,即时间、高度和宽度。**在处理文本输入时,其各分量利用相同的位置 ID,此时功能上等同于 1D - RoPE。而处理图像时,每个视觉标记的时间 ID 保持恒定,高度和宽度分量则依据标记在图像中的位置分配不同 ID。对于视频(视为帧序列),时间 ID 会随每一帧递增,高度和宽度分量的 ID 分配模式与图像相同。当模型输入包含多种模态时,每个模态的位置编号通过在前一模态的最大位置 ID 上加 1 进行初始化。

    优势与作用:在性能表现上,通过实验验证,在多个下游任务中,如与 1D - RoPE 对比,M - RoPE 能取得更优结果,尤其在视频基准测试中优势明显。它能够更精准地捕捉多模态数据中不同元素的位置关系,使模型对图像和视频内容的理解更为准确。在视频理解任务中,能更好地识别视频中物体的运动轨迹、相对位置等信息。在模型的长序列处理能力方面,M - RoPE 有助于降低图像和视频的位置 ID 值,从而使模型在推理过程中能够更好地外推到更长的序列,有效提升了模型对复杂多模态数据的处理能力和泛化能力,进一步增强了 Qwen2 - VL 模型在多模态任务中的竞争力。

    下面是M - RoPE的结构图

  • 统一的图像和视频理解:Qwen2-VL 采用了包含图像和视频数据的混合训练方案,确保在图像理解和视频理解方面的熟练程度。为了尽可能完整地保留视频信息,我们以每秒两帧的频率对每个视频进行采样。此外,我们集成了深度为 2 的 3D 卷积(Carreira 和 Zisserman,2017)来处理视频输入,使模型能够处理 3D 管而不是 2D 块,从而使其能够在不增加序列长度的情况下处理更多的视频帧。为保持一致性,将每幅图像视为两个相同的帧。为了在长视频处理的计算需求和整体训练效率之间取得平衡,我们动态调整每个视频帧的分辨率,将每个视频的标记总数限制为 16384。这种训练方法在模型理解长视频的能力和训练效率之间达成了平衡。

相关推荐
AI 研究所2 小时前
1024开发者节:开源发布,引领生态繁荣
人工智能·语言模型·开源·大模型·交互·agent
leafff1232 小时前
AI数据库研究:RAG 架构运行算力需求?
数据库·人工智能·语言模型·自然语言处理·架构
闲看云起11 小时前
一文了解RoPE(旋转位置编码)
人工智能·语言模型·自然语言处理
鲸鱼在dn20 小时前
大型语言模型推理能力评估——李宏毅2025大模型课程第9讲内容
人工智能·语言模型·自然语言处理
PKNLP21 小时前
14.大语言模型微调语料构建
人工智能·语言模型·模型微调
Wu Liuqi21 小时前
【大模型学习4】大语言模型(LLM)详解
人工智能·学习·语言模型·大模型
学历真的很重要21 小时前
LangChain V1.0 Messages 详细指南
开发语言·后端·语言模型·面试·langchain·职场发展·langgraph
柳安忆1 天前
【论文阅读与项目复现】Hypothesis Generation with Large Language Models
论文阅读·人工智能·语言模型
汉克老师1 天前
CCF--LMCC大语言模型能力认证官方样题(第一赛(青少年组)第二部分 程序题 (26--30))
人工智能·语言模型·自然语言处理·lmcc
悟乙己1 天前
超越文本:利用大型语言模型进行时间序列预测(第1部分)
人工智能·语言模型·自然语言处理