模型选择+过拟合欠拟合

训练误差和泛化误差

训练误差:模型在训练数据上的误差

泛化误差:模型在新数据上的误差

验证数据集:一个用来评估模型好坏的数据集

  • 例如拿出50%的数据作为训练

测试数据集:只能用一次

K则交叉验证

在没有足够数据时使用

算法:

  • 将训练数据分割为k块
  • for i in range(0, k]
    • 使用第i块作为验证数据集,其余作为训练数据集
  • 报告k个验证集误差的平均

训练数据集:训练模型参数

验证数据集:选择模型超参数

非大数据集上通常使用K折交叉验证

过拟合和欠拟合

根据数据集的复杂度选择模型容量

本质是泛化误差和训练误差的平衡

VC维可以衡量训练误差和泛化误差的间隔,但在深度学习中很少使用

SVM能解决的问题少于神经网络,神经网络可以通过卷积得到多种特征

相关推荐
roman_日积跬步-终至千里6 分钟前
【模式识别与机器学习(10)】数据预处理-第二部分:数据预处理核心方法
人工智能·机器学习
用户51914958484521 分钟前
探秘C#伪随机数生成器的安全漏洞与破解之道
人工智能·aigc
小糖学代码26 分钟前
LLM系列:1.python入门:2.数值型对象
人工智能·python·ai
gs8014038 分钟前
Ascend 服务器是什么?(Ascend Server / 昇腾服务器)
运维·服务器·人工智能
csdn_aspnet1 小时前
AI赋能各类主流编程语言
人工智能·ai·软件开发
CodeNerd影1 小时前
RAG文件检索增强(基于吴恩达课程)
人工智能
阿里云大数据AI技术1 小时前
一行代码,让Elasticsearch 集群瞬间雪崩——5000W 数据压测下的性能避坑全攻略
人工智能
Slaughter信仰1 小时前
图解大模型_生成式AI原理与实战学习笔记(前三章综合问答)
人工智能·笔记·学习
霍格沃兹测试学院-小舟畅学1 小时前
告别误判:基于n8n构建你的AI输出安全测试护盾
人工智能
阿乔外贸日记1 小时前
中国汽车零配件出口企业情况
大数据·人工智能·智能手机·云计算·汽车