模型选择+过拟合欠拟合

训练误差和泛化误差

训练误差:模型在训练数据上的误差

泛化误差:模型在新数据上的误差

验证数据集:一个用来评估模型好坏的数据集

  • 例如拿出50%的数据作为训练

测试数据集:只能用一次

K则交叉验证

在没有足够数据时使用

算法:

  • 将训练数据分割为k块
  • for i in range(0, k]
    • 使用第i块作为验证数据集,其余作为训练数据集
  • 报告k个验证集误差的平均

训练数据集:训练模型参数

验证数据集:选择模型超参数

非大数据集上通常使用K折交叉验证

过拟合和欠拟合

根据数据集的复杂度选择模型容量

本质是泛化误差和训练误差的平衡

VC维可以衡量训练误差和泛化误差的间隔,但在深度学习中很少使用

SVM能解决的问题少于神经网络,神经网络可以通过卷积得到多种特征

相关推荐
智慧地球(AI·Earth)5 分钟前
Vibe Coding:你被取代了吗?
人工智能
大、男人36 分钟前
DeepAgent学习
人工智能·学习
测试人社区—66791 小时前
提升测试覆盖率的有效手段剖析
人工智能·学习·flutter·ui·自动化·测试覆盖率
哥布林学者1 小时前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识(一)图像处理基础
深度学习·ai
狂炫冰美式1 小时前
不谈技术,搞点文化 🧀 —— 从复活一句明代残诗破局产品迭代
前端·人工智能·后端
phoenix@Capricornus2 小时前
视觉Transformer(ViT)
人工智能·深度学习·transformer
马踏岛国赏樱花2 小时前
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
深度学习
子春一2 小时前
Flutter 与 AI 融合开发实战:在移动端集成大模型、智能推荐与生成式 UI
人工智能·flutter·ui