模型选择+过拟合欠拟合

训练误差和泛化误差

训练误差:模型在训练数据上的误差

泛化误差:模型在新数据上的误差

验证数据集:一个用来评估模型好坏的数据集

  • 例如拿出50%的数据作为训练

测试数据集:只能用一次

K则交叉验证

在没有足够数据时使用

算法:

  • 将训练数据分割为k块
  • for i in range(0, k]
    • 使用第i块作为验证数据集,其余作为训练数据集
  • 报告k个验证集误差的平均

训练数据集:训练模型参数

验证数据集:选择模型超参数

非大数据集上通常使用K折交叉验证

过拟合和欠拟合

根据数据集的复杂度选择模型容量

本质是泛化误差和训练误差的平衡

VC维可以衡量训练误差和泛化误差的间隔,但在深度学习中很少使用

SVM能解决的问题少于神经网络,神经网络可以通过卷积得到多种特征

相关推荐
为爱停留4 分钟前
Spring AI实现RAG(检索增强生成)详解与实践
人工智能·深度学习·spring
像风没有归宿a21 分钟前
2025年人工智能十大技术突破:从AGI到多模态大模型
人工智能
噜~噜~噜~28 分钟前
显式与隐式欧拉法(Explicit Euler and Implicit Euler)的个人理解
深度学习·显式欧拉法·隐式欧拉法·动力学系统
深鱼~30 分钟前
十分钟在 openEuler 上搭建本地 AI 服务:LocalAI 快速部署教程
人工智能
飞哥数智坊1 小时前
不敢把个人信息喂给 AI?OneAIFW 简单搞定隐私保护!
人工智能
Coder_Boy_1 小时前
【人工智能应用技术】-基础实战-环境搭建(基于springAI+通义千问)(二)
数据库·人工智能
Jurio.1 小时前
Python Ray 分布式计算应用
linux·开发语言·python·深度学习·机器学习
爱加糖的橙子1 小时前
Dify升级到Dify v1.10.1-fix修复CVE-2025-55182漏洞
人工智能·python·ai
齐齐大魔王2 小时前
OpenCV
人工智能·opencv·计算机视觉