模型选择+过拟合欠拟合

训练误差和泛化误差

训练误差:模型在训练数据上的误差

泛化误差:模型在新数据上的误差

验证数据集:一个用来评估模型好坏的数据集

  • 例如拿出50%的数据作为训练

测试数据集:只能用一次

K则交叉验证

在没有足够数据时使用

算法:

  • 将训练数据分割为k块
  • for i in range(0, k]
    • 使用第i块作为验证数据集,其余作为训练数据集
  • 报告k个验证集误差的平均

训练数据集:训练模型参数

验证数据集:选择模型超参数

非大数据集上通常使用K折交叉验证

过拟合和欠拟合

根据数据集的复杂度选择模型容量

本质是泛化误差和训练误差的平衡

VC维可以衡量训练误差和泛化误差的间隔,但在深度学习中很少使用

SVM能解决的问题少于神经网络,神经网络可以通过卷积得到多种特征

相关推荐
minhuan1 小时前
构建AI智能体:一百、AI模型选择与部署考量:从业务需求到实际落地的思考决策
人工智能·大模型选择·大模型介绍
AI浩2 小时前
Cambrian-S:迈向视频中的空间超感知
人工智能·目标检测·计算机视觉·音视频
信息快讯2 小时前
【机器学习在智能水泥基复合材料中的应用领域】
人工智能·机器学习·材料工程·复合材料·水泥基
q***T5832 小时前
机器学习基础
人工智能·机器学习
大明者省2 小时前
BERT/ViT 模型核心参数 + 实际编码案例表
人工智能·深度学习·bert
isNotNullX2 小时前
数据中台有什么用?数据仓库和数据中台怎么选?
大数据·数据仓库·人工智能·数据中台
roman_日积跬步-终至千里3 小时前
【AI Engineering】Should I build this AI application?—AI应用决策框架与实践指南
大数据·人工智能
新智元3 小时前
谷歌 Nano Banana Pro 炸了!硅谷 AI 半壁江山同框,网友:PS 已死
人工智能·openai
m***D2863 小时前
机器学习总结
人工智能·机器学习
新智元3 小时前
51 岁周志华、53 岁刘云浩,当选中国科学院院士!
人工智能·openai