模型选择+过拟合欠拟合

训练误差和泛化误差

训练误差:模型在训练数据上的误差

泛化误差:模型在新数据上的误差

验证数据集:一个用来评估模型好坏的数据集

  • 例如拿出50%的数据作为训练

测试数据集:只能用一次

K则交叉验证

在没有足够数据时使用

算法:

  • 将训练数据分割为k块
  • for i in range(0, k]
    • 使用第i块作为验证数据集,其余作为训练数据集
  • 报告k个验证集误差的平均

训练数据集:训练模型参数

验证数据集:选择模型超参数

非大数据集上通常使用K折交叉验证

过拟合和欠拟合

根据数据集的复杂度选择模型容量

本质是泛化误差和训练误差的平衡

VC维可以衡量训练误差和泛化误差的间隔,但在深度学习中很少使用

SVM能解决的问题少于神经网络,神经网络可以通过卷积得到多种特征

相关推荐
safestar201233 分钟前
n8n 架构深度解构:从设计哲学到企业级实践
人工智能·ai编程
喵手35 分钟前
AI在自动化与机器人技术中的前沿应用
人工智能·机器人·自动化
一只乔哇噻1 小时前
java后端工程师+AI大模型进修ing(研一版‖day55)
人工智能
小毅&Nora1 小时前
【AI微服务】【Spring AI Alibaba】② Agent 深度实战:构建可记忆、可拦截、可流式的智能体系统
人工智能·微服务·spring-ai
陈天伟教授2 小时前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客2402 小时前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿2 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉3 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中4 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海4 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络