模型选择+过拟合欠拟合

训练误差和泛化误差

训练误差:模型在训练数据上的误差

泛化误差:模型在新数据上的误差

验证数据集:一个用来评估模型好坏的数据集

  • 例如拿出50%的数据作为训练

测试数据集:只能用一次

K则交叉验证

在没有足够数据时使用

算法:

  • 将训练数据分割为k块
  • for i in range(0, k]
    • 使用第i块作为验证数据集,其余作为训练数据集
  • 报告k个验证集误差的平均

训练数据集:训练模型参数

验证数据集:选择模型超参数

非大数据集上通常使用K折交叉验证

过拟合和欠拟合

根据数据集的复杂度选择模型容量

本质是泛化误差和训练误差的平衡

VC维可以衡量训练误差和泛化误差的间隔,但在深度学习中很少使用

SVM能解决的问题少于神经网络,神经网络可以通过卷积得到多种特征

相关推荐
喜欢吃豆2 小时前
GraphRAG 技术教程:从核心概念到高级架构
人工智能·架构·大模型
王哈哈^_^2 小时前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
AI浩3 小时前
FeatEnHancer:在低光视觉下增强目标检测及其他任务的分层特征
人工智能·目标检测·目标跟踪
深度学习lover3 小时前
<数据集>yolo航拍交通目标识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·航拍交通目标识别
商汤万象开发者3 小时前
LazyLLM教程 | 第13讲:RAG+多模态:图片、表格通吃的问答系统
人工智能·科技·算法·开源·多模态
IT管理圈3 小时前
AI agent正在重塑组织:麦肯锡的“智能体组织“解读
人工智能
YuanDaima20483 小时前
[CrewAI] 第5课|基于多智能体构建一个 AI 客服支持系统
人工智能·笔记·多智能体·智能体·crewai
Coovally AI模型快速验证3 小时前
视觉语言模型(VLM)深度解析:如何用它来处理文档
人工智能·yolo·目标跟踪·语言模型·自然语言处理·开源
兰亭妙微4 小时前
用户体验的真正边界在哪里?对的 “认知负荷” 设计思考
人工智能·ux