决策树(理论知识4)

目录

决策树中的连续值处理

在前面的数据集中,各项特征(以及标签)均为离散型数据,但有时处理的数据对象可能会含有连续性数值,为了解决这一问题,我们可以对数据进行离散化处理。此时,可把连续取值的数据值域划分为多个区间,并将每个区间视为该特征的一个取值,如此就完成了从连续性数据到离散性数据的转变。例如,当 "学校举办运动会的历史数据" 为下表时,我们可根据这些数据(并结合相关知识)将温度特征的取值作以下划分:

将 "温度" 属性进行分区处理:

对于一些尚无明确划分标准的特征(如下面是一组无具体含义的数据):

62,65,72,86,89,96,102,116,118,120,125,169,187,211,218

我们要如何将这些数据进行离散化呢?一种较为直接的方式是:对原数据进行排序,再取任意相邻值的中位点作为划分点,

例如:可以取65和72的中位点( φ = a i + a i + 1 2 = 65 + 72 2 = 68.5 \varphi=\frac{a_i+a_{i+1}}{2}=\frac{65+72}{2}=68.5 φ=2ai+ai+1=265+72=68.5)进行划分。对数据进行离散化处理是希望划分之后的数据集更加纯净,

所以这里依然可以用信息熵来作为对划分的度量,并选取划分效果最好的点作为划分点。

对于长度为n的数据,其备选中位点有n−1个:
φ = { a i + a i + 1 2 , 1 < = i < = n − 1 } \varphi=\{\frac{a_i+a_{i+1}}{2},1<=i<=n-1\} φ={2ai+ai+1,1<=i<=n−1}

我们需要算出这n−1个备选中位点划分出的数据集的信息熵,信息熵最小的就是最优划分点。

在评估决策树执行分类或回归任务的效果时,其方式也有所不同。对于分类任务,可用熵或基尼系数;对于回归任务,则需要用方差来衡量最终落到某个叶子节点中的数值之间的差异(方差越小则说明数据之间的差异越小,越应该被归类到一类)。注:决策树在执行回归任务时,其最终反馈的结果应当取某个叶子结点中所有数的均值。

相关推荐
海边夕阳20064 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
xlq223224 小时前
22.多态(上)
开发语言·c++·算法
666HZ6664 小时前
C语言——高精度加法
c语言·开发语言·算法
sweet丶4 小时前
iOS MMKV原理整理总结:比UserDefaults快100倍的存储方案是如何炼成的?
算法·架构
云里雾里!5 小时前
力扣 209. 长度最小的子数组:滑动窗口解法完整解析
数据结构·算法·leetcode
CoderYanger6 小时前
递归、搜索与回溯-穷举vs暴搜vs深搜vs回溯vs剪枝:12.全排列
java·算法·leetcode·机器学习·深度优先·剪枝·1024程序员节
憨憨崽&6 小时前
进击大厂:程序员必须修炼的算法“内功”与思维体系
开发语言·数据结构·算法·链表·贪心算法·线性回归·动态规划
搞科研的小刘选手7 小时前
【高录用|快检索】第二届图像处理、多媒体技术与机器学习国际学术会议(IPMML 2025)
人工智能·机器学习·多媒体·学术会议
chem41117 小时前
C 语言 函数指针和函数指针数组
c语言·数据结构·算法
高锰酸钾_7 小时前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习