决策树(理论知识4)

目录

决策树中的连续值处理

在前面的数据集中,各项特征(以及标签)均为离散型数据,但有时处理的数据对象可能会含有连续性数值,为了解决这一问题,我们可以对数据进行离散化处理。此时,可把连续取值的数据值域划分为多个区间,并将每个区间视为该特征的一个取值,如此就完成了从连续性数据到离散性数据的转变。例如,当 "学校举办运动会的历史数据" 为下表时,我们可根据这些数据(并结合相关知识)将温度特征的取值作以下划分:

将 "温度" 属性进行分区处理:

对于一些尚无明确划分标准的特征(如下面是一组无具体含义的数据):

62,65,72,86,89,96,102,116,118,120,125,169,187,211,218

我们要如何将这些数据进行离散化呢?一种较为直接的方式是:对原数据进行排序,再取任意相邻值的中位点作为划分点,

例如:可以取65和72的中位点( φ = a i + a i + 1 2 = 65 + 72 2 = 68.5 \varphi=\frac{a_i+a_{i+1}}{2}=\frac{65+72}{2}=68.5 φ=2ai+ai+1=265+72=68.5)进行划分。对数据进行离散化处理是希望划分之后的数据集更加纯净,

所以这里依然可以用信息熵来作为对划分的度量,并选取划分效果最好的点作为划分点。

对于长度为n的数据,其备选中位点有n−1个:
φ = { a i + a i + 1 2 , 1 < = i < = n − 1 } \varphi=\{\frac{a_i+a_{i+1}}{2},1<=i<=n-1\} φ={2ai+ai+1,1<=i<=n−1}

我们需要算出这n−1个备选中位点划分出的数据集的信息熵,信息熵最小的就是最优划分点。

在评估决策树执行分类或回归任务的效果时,其方式也有所不同。对于分类任务,可用熵或基尼系数;对于回归任务,则需要用方差来衡量最终落到某个叶子节点中的数值之间的差异(方差越小则说明数据之间的差异越小,越应该被归类到一类)。注:决策树在执行回归任务时,其最终反馈的结果应当取某个叶子结点中所有数的均值。

相关推荐
地平线开发者2 分钟前
征程 6 | 平台 QAT 精度一致性问题分析流程
算法·自动驾驶
mjhcsp4 分钟前
C++ Manacher 算法:原理、实现与应用全解析
java·c++·算法·manacher 算法
AlenTech20 分钟前
198. 打家劫舍 - 力扣(LeetCode)
算法·leetcode·职场和发展
Z1Jxxx24 分钟前
0和1的个数
数据结构·c++·算法
ldccorpora24 分钟前
Chinese News Translation Text Part 1数据集介绍,官网编号LDC2005T06
数据结构·人工智能·python·算法·语音识别
重生之后端学习25 分钟前
21. 合并两个有序链表
java·算法·leetcode·链表·职场和发展
源代码•宸26 分钟前
Leetcode—1266. 访问所有点的最小时间【简单】
开发语言·后端·算法·leetcode·职场和发展·golang
YuTaoShao1 小时前
【LeetCode 每日一题】712. 两个字符串的最小ASCII删除和——(解法一)记忆化搜索
算法·leetcode·职场和发展
知乎的哥廷根数学学派1 小时前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习