决策树(理论知识4)

目录

决策树中的连续值处理

在前面的数据集中,各项特征(以及标签)均为离散型数据,但有时处理的数据对象可能会含有连续性数值,为了解决这一问题,我们可以对数据进行离散化处理。此时,可把连续取值的数据值域划分为多个区间,并将每个区间视为该特征的一个取值,如此就完成了从连续性数据到离散性数据的转变。例如,当 "学校举办运动会的历史数据" 为下表时,我们可根据这些数据(并结合相关知识)将温度特征的取值作以下划分:

将 "温度" 属性进行分区处理:

对于一些尚无明确划分标准的特征(如下面是一组无具体含义的数据):

62,65,72,86,89,96,102,116,118,120,125,169,187,211,218

我们要如何将这些数据进行离散化呢?一种较为直接的方式是:对原数据进行排序,再取任意相邻值的中位点作为划分点,

例如:可以取65和72的中位点( φ = a i + a i + 1 2 = 65 + 72 2 = 68.5 \varphi=\frac{a_i+a_{i+1}}{2}=\frac{65+72}{2}=68.5 φ=2ai+ai+1=265+72=68.5)进行划分。对数据进行离散化处理是希望划分之后的数据集更加纯净,

所以这里依然可以用信息熵来作为对划分的度量,并选取划分效果最好的点作为划分点。

对于长度为n的数据,其备选中位点有n−1个:
φ = { a i + a i + 1 2 , 1 < = i < = n − 1 } \varphi=\{\frac{a_i+a_{i+1}}{2},1<=i<=n-1\} φ={2ai+ai+1,1<=i<=n−1}

我们需要算出这n−1个备选中位点划分出的数据集的信息熵,信息熵最小的就是最优划分点。

在评估决策树执行分类或回归任务的效果时,其方式也有所不同。对于分类任务,可用熵或基尼系数;对于回归任务,则需要用方差来衡量最终落到某个叶子节点中的数值之间的差异(方差越小则说明数据之间的差异越小,越应该被归类到一类)。注:决策树在执行回归任务时,其最终反馈的结果应当取某个叶子结点中所有数的均值。

相关推荐
有为少年39 分钟前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
Ven%1 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
山楂树の1 小时前
爬楼梯(动态规划)
算法·动态规划
谈笑也风生1 小时前
经典算法题型之复数乘法(二)
开发语言·python·算法
智算菩萨1 小时前
强化学习从单代理到多代理系统的理论与算法架构综述
人工智能·算法·强化学习
lhn1 小时前
大模型强化学习总结
算法
Gigavision1 小时前
MMPD数据集 最新Mamba算法 源码+数据集 下载方式
算法
Xの哲學1 小时前
Linux UPnP技术深度解析: 从设计哲学到实现细节
linux·服务器·网络·算法·边缘计算
歌_顿1 小时前
GPT 系列学习总结(1-3)
算法
业精于勤的牙1 小时前
最长特殊序列(三)
算法