Day62 图论part11

Floyd 算法精讲

Floyd 算法代码很简单,但真正理解起原理 还是需要花点功夫,大家在看代码的时候,会发现 Floyd 的代码很简单,甚至看一眼就背下来了,但我为了讲清楚原理,本篇还是花了大篇幅来讲解。

代码随想录

方法1:三维dp数组

java 复制代码
import java.util.*;

public class Main{
    public static void main (String[] args) {
        Scanner sc = new Scanner(System.in);
        
        int n = sc.nextInt();
        int m = sc.nextInt();
        
        int[][][] grid = new int[n+1][n+1][n+1];
        //grid[i][j][k] = m 表示节点i 到 j ,以[1...k] 集合为中间节点的最短距离为m
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n; j++){
                Arrays.fill(grid[i][j], Integer.MAX_VALUE);
            } 
            grid[i][i][0] = 0;
        }
        
        for(int i = 0; i < m; i++){
            int u = sc.nextInt();
            int v = sc.nextInt();
            int w = sc.nextInt();
            grid[u][v][0] = w;
            grid[v][u][0] = w;
        }
        
        for(int k = 1; k <= n; k++){
            for(int i = 1; i <= n; i++){
                for(int j = 1; j <= n; j++){
                    if(grid[i][k][k-1] != Integer.MAX_VALUE && grid[k][j][k-1] != Integer.MAX_VALUE){
                        grid[i][j][k] = Math.min(grid[i][j][k-1], grid[i][k][k-1]+grid[k][j][k-1]);
                    }else{
                        grid[i][j][k] = grid[i][j][k-1];// grid[i][j][k]并不会继承grid[i][j][k-1],而是保留为初始值;
                    }
                }
            }
        }
        
        int q = sc.nextInt();
        for(int i = 0; i < q; i++){
           int start = sc.nextInt();
           int end = sc.nextInt();
           if(grid[start][end][n] == Integer.MAX_VALUE){
              System.out.println(-1);
           }else{
              System.out.println(grid[start][end][n]); 
           }
        }
        
    }
    
}

方法2:二维dp数组

java 复制代码
import java.util.*;

public class Main{
    public static void main (String[] args) {
        Scanner sc = new Scanner(System.in);
        
        int n = sc.nextInt();
        int m = sc.nextInt();
        
        int[][] grid = new int[n+1][n+1];
        //grid[i][j][k] = m 表示节点i 到 j ,以[1...k] 集合为中间节点的最短距离为m
        for(int i = 1; i <= n; i++){
            Arrays.fill(grid[i], 10001);
            grid[i][i] = 0;
        }
        
        for(int i = 0; i < m; i++){
            int u = sc.nextInt();
            int v = sc.nextInt();
            int w = sc.nextInt();
            grid[u][v] = w;
            grid[v][u] = w;
        }
        
        for(int k = 1; k <= n; k++){
            for(int i = 1; i <= n; i++){
                for(int j = 1; j <= n; j++){
                    grid[i][j] = Math.min(grid[i][j], grid[i][k]+grid[k][j]);
                }
            }
        }
        
        int q = sc.nextInt();
        for(int i = 0; i < q; i++){
           int start = sc.nextInt();
           int end = sc.nextInt();
           if(grid[start][end] == 10001){
              System.out.println(-1);
           }else{
              System.out.println(grid[start][end]); 
           }
        }
        
    }
    
}

总结

1.确定dp数组(dp table)以及下标的含义:

//grid[i][j][k] = m 表示节点i 到 j ,以[1...k] 集合为中间节点的最短距离为m2

2.确定递推公式

第一种情况:不经过中间节点K,那么

grid[i][j][k] = grid[i][j][k-1]

第二种情况:经过中间节点K,那么

grid[i][j][k] = grid[i][k][k-1]+grid[k][j][k-1];

节点i 到 节点k 的最短距离 是不经过节点k,中间节点集合为[1...k-1],所以 表示为grid[i][k][k - 1]

节点k 到 节点j 的最短距离 也是不经过节点k,中间节点集合为[1...k-1],所以表示为 grid[k][j][k - 1]

grid[i][j][k] = Math.min(grid[i][j][k-1], grid[i][k][k-1]+grid[k][j][k-1]);

3.dp数组如何初始化:需要初始化K=0的情况,K=0,就是两个节点直接相连,没有中间节点,所以直接赋值边的权值就可以了(双向或者无向需要两个方向初始化,有向图只要一个方向初始化)。然后其他对角元素应该初始化为0,其他元素初始化为边的权值的最大值(10001或者最大整形都可以,10001更加方便,后续不需要考虑溢出的情况)。

4.确定遍历顺序:

grid[i][j][k] = Math.min(grid[i][j][k-1], grid[i][k][k-1]+grid[k][j][k-1]);

初始化的时候把 k =0 的 i 和j 对应的数值都初始化了,这样才能去计算 k = 1 的时候 i 和 j 对应的数值。这就好比是一个三维坐标,i 和j 是平层,而k是垂直向上的。遍历的顺序是从底向上 一层一层去遍历。所以遍历k 的for循环一定是在最外面,这样才能一层一层去遍历。k 依赖于 k - 1, i 和j 的到并不依赖与 i - 1 或者 j - 1 。所以一定是把k 的for循环放在最外面,才能用上 初始化和上一轮计算的结果了。i和j的遍历顺序就无所谓了。

5.二维的dp数组,就把k这一维度去掉。每次进入新的k,其实都保留着上一轮k的数值,靠着最外层的for循环,来实现对k的滚动。

6.Floyd 算法的时间复杂度相对较高,Floyd 算法适合多源最短路,即 求多个起点到多个终点的多条最短路径。适合 稠密图且源点较多的情况。 时间复杂度: O(n^3);如果 源点少,其实可以 多次dijsktra 求源点到终点。Floyd 算法对边的权值正负没有要求,都可以处理

A * 算法精讲 (A star算法)

一般 笔试或者 面试的时候,不会考察A*, 都是会结合具体业务场景问 A*算法,例如:地图导航,游戏开发 等等。其实基础版的A* 并不难,所以大家不要畏惧,理解本篇内容,甚至独立写出代码,大家可以做到,加油

A * 算法精讲 (A star算法) | 代码随想录

java 复制代码
import java.util.*;

public class Main {
    static int[][] moves = new int[1001][1001]; // 记录每个位置的移动次数
    static int[][] dir = { // 马的8个方向
            {-2, -1}, {-2, 1}, {-1, 2}, {1, 2}, 
            {2, 1}, {2, -1}, {1, -2}, {-1, -2}
    };
    static int b1, b2; // 目标位置的x, y坐标

    static class Knight implements Comparable<Knight> {
        int x, y, g, h, f;

        Knight(int x, int y, int g, int h) {
            this.x = x;
            this.y = y;
            this.g = g; // G = 从起点到该节点的路径消耗
            this.h = h; // H = 从该节点到终点的预估消耗
            this.f = g + h; // F = G + H
        }

        @Override
        public int compareTo(Knight k) {
            return Integer.compare(this.f, k.f); // 按照f值从小到大排序
        }
    }

    // 欧拉距离的启发函数(不开根号以提高精度)
    static int heuristic(Knight k) {
        return (k.x - b1) * (k.x - b1) + (k.y - b2) * (k.y - b2);
    }

    static void astar(Knight start) {
        PriorityQueue<Knight> queue = new PriorityQueue<>();
        queue.add(start);

        while (!queue.isEmpty()) {
            Knight cur = queue.poll(); // 取出f值最小的节点

            // 如果到达目标位置,直接退出
            if (cur.x == b1 && cur.y == b2) {
                break;
            }

            for (int[] d : dir) {
                int nx = cur.x + d[0];
                int ny = cur.y + d[1];

                // 检查边界
                if (nx < 1 || nx > 1000 || ny < 1 || ny > 1000) {
                    continue;
                }

                // 如果这个位置没有访问过
                if (moves[nx][ny] == 0) {
                    moves[nx][ny] = moves[cur.x][cur.y] + 1; // 更新移动次数
                    int g = cur.g + 5; // 马走日消耗固定为5
                    int h = heuristic(new Knight(nx, ny, 0, 0));
                    Knight next = new Knight(nx, ny, g, h);
                    queue.add(next); // 加入优先队列
                }
            }
        }
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt(); // 测试案例数量
        while (n-- > 0) {
            int a1 = sc.nextInt(), a2 = sc.nextInt(); // 起点坐标
            b1 = sc.nextInt();
            b2 = sc.nextInt(); // 终点坐标
            for (int[] row : moves) {
                Arrays.fill(row, 0); // 初始化moves数组
            }
            Knight start = new Knight(a1, a2, 0, heuristic(new Knight(a1, a2, 0, 0)));
            astar(start);
            System.out.println(moves[b1][b2]); // 输出结果
        }
        sc.close();
    }
}

PriorityQueue<Knight> queue = new PriorityQueue<>();这个PriorityQueue 自动根据 compareTo 方法维护堆的性质或任何自定义比较器的实现。

java 复制代码
 @Override
    public int compareTo(Person other) {
        return Integer.compare(this.age, other.age); // 按年龄升序排序
    }

//反向比较
@Override
public int compareTo(Knight k) {
    return Integer.compare(k.f, this.f); // 交换位置,k 在前面
}

1.为什么按照 F 值排序?

  • F = G + H 表示从起点经过当前节点到终点的总代价估计值。
  • 按照 F 值排序能够保证优先探索 当前预估代价最小的路径,从而以最快的速度找到最优解。

示例解释

假设:

  • 当前节点 A 的 G=2, H=5, 所以 F=2+5=7。
  • 另一个节点 B 的 G=4, H=2, 所以 F=4+2=6。

如果只按照 H 值排序,会优先选择 A(H = 5):

  • 但 A 的总代价 F=7,并不是最优路径。

按照 F 值排序,会优先选择 B(F = 6),更接近最终的最优路径。

核心思路就是从队列里面优先弹出F值更小的元素,那么使用优先级队列就可以做到。Java 的优先级队列 (PriorityQueue) 默认是小顶堆。这意味着在队列中,优先级最低的元素(数值最小的元素)会排在队首,即最先被弹出。

2.moves 数组的作用是 记录某个棋盘位置是否已经访问过 ,以及该位置从起点到当前的 步数

3.Astar 是一种 广搜的改良版。 或者是 dijkstra 的改良版。如果是无权图(边的权值都是1) 那就用广搜。如果是有权图(边有不同的权值),优先考虑 dijkstra。Astar 关键在于 启发式函数, 也就是 影响 广搜或者 dijkstra 从 容器(队列)里取元素的优先顺序。

最短路算法总结篇

最各个最短路算法有个全面的了解

最短路算法总结篇 | 代码随想录

图论总结

图论总结篇 | 代码随想录

相关推荐
攻城丶狮1 天前
【蓝桥杯比赛-C++组-经典题目汇总】
c++·算法·图论
池鱼c0de3 天前
拓扑排序模板题:洛谷-家谱树
数据结构·c++·算法·图论·拓扑学
m0_577411013 天前
第十一章 图论
图论
岸榕.3 天前
19712 数字接龙
算法·深度优先·图论
星与星熙.6 天前
期末算法分析程序填空题
c++·算法·图论
get_money_9 天前
代码随想录Day52 101. 孤岛的总面积,102. 沉没孤岛,103. 水流问题,104.建造最大岛屿。
java·开发语言·笔记·算法·深度优先·图论
martian6659 天前
【人工智能离散数学基础】——深入详解图论:基础图结构及算法,应用于图神经网络等
人工智能·神经网络·算法·图论
打不了嗝 ᥬ᭄9 天前
cin/cout性能问题讨论和优化⽅法
图论
ALISHENGYA10 天前
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(实战训练三)
数据结构·c++·算法·图论