MySQL为什么选择使用B+树作为索引结构?

1. 可以先分析B+树的优势

  1. 矮胖: 随着数据量的增长,B+树的高度增长不会太快,使得磁盘的I/O次数减少
  2. 自平衡性: B+树是一种自平衡的二叉树,在新增和删除节点会进行分裂合并操作,以保证树的平衡,删除效率更高。
  3. 范围查询能力强:B+树的叶子节点之间通过双向链表连接,范围查询能力强,查询效率高。

2.再分析别的数据结构的劣势(二叉树、红黑树、B树、Hash表)

二叉树:

  • 查询效率不稳定,二叉树可能退化成链表
  • 随着数据量的增加,树的高度增长过快,层级比较深,从而增加I/O次数使得效率低下

红黑树:

本质也是一个二叉树(自平衡二叉树),在大数据量的情况下,层级比较深,会导致树的高度较高,检索速度慢

B-Tree(多路平衡查找树)

非叶子节点会存储数据,每页存储的键值对变少,导致树的层次变深,,从而增加I/O次数,使得效率低下

Hash表

哈希表是键值对的集合,通过键(key)即可快速取出对应的值(value),因此哈希表可以快速检索数据(接近 O(1))。,但是为什么 MySQL 没有使用其作为索引的数据结构呢?

主要是因为 Hash 索引不支持顺序和范围查询。

举例:

假如我们要对表中的数据进行排序或者进行范围查询,那 Hash 索引可就不行了。并且,每次 IO 只能取一个。

试想一种情况:

复制代码
SELECT * FROM tb1 WHERE id < 500;

在这种范围查询中,优势非常大,直接遍历比 500 小的叶子节点就够了。而 Hash 索引是根据 hash 算法来定位的,难不成还要把 1 - 499 的数据,每个都进行一次 hash 计算来定位吗?这就是 Hash 最大的缺点了。

相关推荐
CookieCrusher2 小时前
数据泄露危机逼近:五款电脑加密软件为企业筑起安全防线
运维·数据库·windows·安全·文件加密·数据防泄漏·dlp
这周也會开心3 小时前
SQL-窗口函数
数据库·sql
TDengine (老段)4 小时前
TDengine 时间函数 WEEKDAY() 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
TDengine (老段)5 小时前
从 ETL 到 Agentic AI:工业数据管理变革与 TDengine IDMP 的治理之道
数据库·数据仓库·人工智能·物联网·时序数据库·etl·tdengine
LQ深蹲不写BUG7 小时前
MySql的事务机制
数据库·mysql
逼子格7 小时前
【Proteus仿真】定时器控制系列仿真——秒表计数/数码管显示时间
数据库·单片机·嵌入式硬件·51单片机·proteus·定时器·硬件工程师
stein_java8 小时前
Mybatis-7 XML映射器
数据库·sql·mybatis
xhbh6669 小时前
开发效率翻倍:资深DBA都在用的MySQL客户端利器
数据库·mysql·数据库连接工具·mysql 连接工具
LJC_Superman9 小时前
Web与Nginx网站服务
运维·服务器·前端·网络·数据库·nginx·vim