【Flink运行时架构】系统构架

SMP架构

数据处理系统的架构最简单的实现方式就是单节点,但是随着数据量的增大,为了使单节点的机器性能更加强大,需要增加CPU数量和加大内存来提高吞吐量。这就是所谓的SMP(Symmetrical Multi Processing,对称多处理)架构。

但是这种架构带来的问题也很明显,不仅所有CPU是完全平等且共享内存和总线资源的,会带来资源竞争。而且随着CPU数量的增加,机器成本会呈指数级增长。因此,SMP的可扩展性是比较差的,无法应对海量数据的处理场景。

分布式架构

基于SMP的局限,提出了不共享任何东西(share-nothing)的分布式架构,比如从 MPP(Massively Parallel Processing,大规模并行处理)架构,到以Hadoop、Spark为代表的批处理,再到以Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态。Flink是一个分布式的并行流处理系统,由多个进程构成,这些进程一般会分布运行在不同的机器上。

对于分布式系统的管理,有很多棘手的问题。比如集群中资源的分配和管理、进程协调调度、持久化和高可用的数据存储、以及故障恢复等。不过,对于分布式系统中这些典型问题,业内已经有比较成熟的解决方案和服务了。

因此,Flink在设计中并不会去处理这些通用问题,而是利用现有的集群架构和服务。比如,在集群资源管理方面,会与现有Yarn、K8s、Mesos等工具集成;在分布式村粗方面,会直接利用现有的HDFS、S3等分布式文件系统;在高可用配置方面,会依赖ZooKeeper来完成。

通过以上方式,Flink就可以把精力集中在核心工作上了,也就是分布式数据流处理。那么,Flink是如何具体实现分布式流处理的,它有哪些组件构成。 下一篇详细介绍。

相关推荐
5***b974 小时前
什么是射频?射频基本架构?
架构
东哥说-MES|从入门到精通5 小时前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
settingsun12255 小时前
分布式系统架构:百万并发系统设计
云原生·架构·分布式系统
谷隐凡二5 小时前
Kubernetes主从架构简单解析:基于Python的模拟实现
python·架构·kubernetes
c***69305 小时前
超详细:数据库的基本架构
数据库·架构
南飞测绘视界6 小时前
上市公司绿色专利申请、授权数据(1999-2024年)
大数据·专利·上市公司
Mintopia7 小时前
无界微前端:父子应用通信、路由与状态管理最佳实践
架构·前端框架·全栈
一个天蝎座 白勺 程序猿7 小时前
KingbaseES在政务领域的应用实践——武汉人社大数据平台“数字化服务新模式”
大数据·数据库·政务·kingbasees·金仓数据库
pale_moonlight7 小时前
十、 Scala 应用实践 (上)
大数据·开发语言·scala
L***86537 小时前
【架构解析】深入浅析DeepSeek-V3的技术架构
架构