【Flink运行时架构】系统构架

SMP架构

数据处理系统的架构最简单的实现方式就是单节点,但是随着数据量的增大,为了使单节点的机器性能更加强大,需要增加CPU数量和加大内存来提高吞吐量。这就是所谓的SMP(Symmetrical Multi Processing,对称多处理)架构。

但是这种架构带来的问题也很明显,不仅所有CPU是完全平等且共享内存和总线资源的,会带来资源竞争。而且随着CPU数量的增加,机器成本会呈指数级增长。因此,SMP的可扩展性是比较差的,无法应对海量数据的处理场景。

分布式架构

基于SMP的局限,提出了不共享任何东西(share-nothing)的分布式架构,比如从 MPP(Massively Parallel Processing,大规模并行处理)架构,到以Hadoop、Spark为代表的批处理,再到以Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态。Flink是一个分布式的并行流处理系统,由多个进程构成,这些进程一般会分布运行在不同的机器上。

对于分布式系统的管理,有很多棘手的问题。比如集群中资源的分配和管理、进程协调调度、持久化和高可用的数据存储、以及故障恢复等。不过,对于分布式系统中这些典型问题,业内已经有比较成熟的解决方案和服务了。

因此,Flink在设计中并不会去处理这些通用问题,而是利用现有的集群架构和服务。比如,在集群资源管理方面,会与现有Yarn、K8s、Mesos等工具集成;在分布式村粗方面,会直接利用现有的HDFS、S3等分布式文件系统;在高可用配置方面,会依赖ZooKeeper来完成。

通过以上方式,Flink就可以把精力集中在核心工作上了,也就是分布式数据流处理。那么,Flink是如何具体实现分布式流处理的,它有哪些组件构成。 下一篇详细介绍。

相关推荐
短剑重铸之日4 小时前
7天读懂MySQL|Day 5:执行引擎与SQL优化
java·数据库·sql·mysql·架构
数据猿5 小时前
【金猿CIO展】上海虹迪物流科技有限公司董事长兼CIO张鹏飞:聚焦数字化核心——物流供应链的的智慧演进之路
大数据·科技
deepdata_cn5 小时前
“深数据” vs “大数据”
大数据·bigdata·深数据·deepdata
喜欢吃豆5 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
予枫的编程笔记7 小时前
Redis 核心数据结构深度解密:从基础命令到源码架构
java·数据结构·数据库·redis·缓存·架构
数字化转型20257 小时前
SAP Signavio 在风机制造行业的深度应用研究
大数据·运维·人工智能
meilididiao8 小时前
低代码应用-动态指标跟踪评测系统
低代码·架构
sheji34168 小时前
【开题答辩全过程】以 基于大数据的城市租房数据的分析与可视化为例,包含答辩的问题和答案
大数据
秋4279 小时前
防火墙基本介绍与使用
linux·网络协议·安全·网络安全·架构·系统安全
Biehmltym11 小时前
【AI】09AI Agent LLM → Streaming → Session 记录 的完整链路
大数据·人工智能·elasticsearch