resnet分类训练

  1. resnet分类器训练
复制代码
import torch
import torchvision
from torchvision import transforms
from torch.utils.data import random_split
import torch.nn as nn
import torch.optim as optim
from torchvision.models import resnet50

# Define the transformation
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# Load the dataset
data = torchvision.datasets.ImageFolder(root=r"D:\train_model\train_data_set", transform=transform)

classes_set = data.classes
# 保存类别信息到 classes.txt
with open('classes.txt', 'w') as f:
    for class_name in classes_set:
        f.write(class_name + '\n')
# Split the data into train and test sets
train_size = int(0.8 * len(data))
test_size = len(data) - train_size
train_data, test_data = random_split(data, [train_size, test_size])

# Optionally, you can load the train and test data into data loaders
train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=False)

# Define the model
model = resnet50(pretrained=True)

# Replace the last layer
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, len(classes_set))
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# Move the model to the device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Define the number of epochs
num_epochs = 10

# Train the model
for epoch in range(num_epochs):
    # Train the model on the training set
    model.train()
    train_loss = 0.0
    for i, (inputs, labels) in enumerate(train_loader):
        # Move the data to the device
        inputs = inputs.to(device)
        # inputs = inputs.float()
        labels = labels.to(device)
        # labels = labels.long()

        # Zero the parameter gradients
        optimizer.zero_grad()

        # Forward + backward + optimize
        outputs = model(inputs)

        loss = criterion(outputs, labels)

        loss.backward()

        optimizer.step()

        # Update the training loss
        train_loss += loss.item() * inputs.size(0)

    # Evaluate the model on the test set
    model.eval()
    test_loss = 0.0
    test_acc = 0.0
    with torch.no_grad():
        for i, (inputs, labels) in enumerate(test_loader):
            # Move the data to the device
            inputs = inputs.to(device)
            labels = labels.to(device)

            # Forward
            outputs = model(inputs)
            loss = criterion(outputs, labels)

            # Update the test loss and accuracy
            test_loss += loss.item() * inputs.size(0)
            _, preds = torch.max(outputs, 1)
            test_acc += torch.sum(preds == labels.data)

    # Print the training and test loss and accuracy
    train_loss /= len(train_data)
    test_loss /= len(test_data)
    test_acc = test_acc.double() / len(test_data)
    print(f"Epoch [{epoch + 1}/{num_epochs}] Train Loss: {train_loss:.4f} Test Loss: {test_loss:.4f} Test Acc: {test_acc:.4f}")

# 保存模型参数
torch.save(model.state_dict(), './model/trained_model.pth')
相关推荐
CoovallyAIHub1 小时前
空间智能!李飞飞、LeCun&谢赛宁联手提出“空间超感知”,长文阐述世界模型蓝图
深度学习·算法·计算机视觉
FL16238631292 小时前
医学类数据集目标检测分割分类数据集汇总介绍
人工智能·目标检测·分类
合天网安实验室2 小时前
深度学习模型CNN识别恶意软件
深度学习·神经网络·机器学习
流烟默2 小时前
机器学习中交叉验证(CV)、CV fold(交叉验证折) 和 数据泄露
人工智能·深度学习·机器学习·交叉验证
进击的炸酱面4 小时前
第五章 神经网络
人工智能·深度学习·神经网络
CODE_RabbitV4 小时前
【1min 速通 -- PyTorch 张量数据类型】张量类型的获取、转化与判别
人工智能·pytorch·python
Danceful_YJ5 小时前
32.Bahdanau 注意力
pytorch·python·深度学习
哥布林学者6 小时前
吴恩达深度学习课程二: 改善深层神经网络 第二周:优化算法(四)RMSprop
深度学习·ai
菠菠萝宝6 小时前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
松岛雾奈.2306 小时前
机器学习-逻辑回归与二分类
机器学习·分类·逻辑回归