Qwen3 Embedding报告随笔

好久没更了,打了俩比赛收益很低,收收心回来继续做论文

这期随笔记录qwen3 embedding模型中的核心内容

这里训练qwen3 embedding模型主要用到一些预训练数据和利用qwen3合成的高质量训练数据

一、简介

采用Qwen3 instruct来合成了一些数据,用于第一训练阶段并且取出一部分高质量的数据用于第二阶段训练

二、模型架构

从Qwen3 dense结构出发

三、embedding和判别式排序

embedding

输入格式:{Instruction} {Query}

用instruct带入语境信息

判别式:

对于判别式的得分,是用两个对数概率求加权占比,这一点和不加权直接拿yes的概率有什么区别

四、训练过程

reranker模型不经过第一阶段的预训练

具体损失

embedding模型的训练损失就是对比损失,对于对比损失的分母,设计比较复杂,融合了多种负样本,并且利用了对query和doc之间的表征的相似度

包括inbatch内的query和正样本doc、query和k难负样本、batch内非自身doc、query之间、doc之间

根据doc候选和正样本的相似度来分配权重,即通过相似度排除一些高可能性是假的负样本带来的噪声:

对于ranker的训练,则是接了一个分类头,用sft的损失

模型融合

对训练过程中的多个模型检查点不是简单的线性加权,而是采用球面线性插值来保留多个检查点的优势

以下是这个技术的做法和gemini的解释:

球面线性插值(Spherical Linear Interpolation, slerp)是实现模型融合的一种高级算法。在深度学习中,一个模型的全部参数(权重)可以被看作是一个高维空间中的向量。传统的模型平均方法(即线性插值)是直接将这些向量进行加权平均。然而,这种简单的线性路径可能会导致合并后的向量长度缩短,从而损失模型的性能和特性。

Slerp 则不同,它在两个模型参数向量之间沿着一个球面上的最短弧线(测地线)进行插值。这种方式能够更好地保留每个原始模型的"几何特性",在平滑过渡的同时,确保融合后的模型能更完整地继承各个检查点的优势,避免性能的直接折损。

这个做法有利于提升模型泛化能力

五、训练数据

用Qwen 32B合成数据,增加数据类少的场景的训练数据,用多种prompt

同时在合成数据时用检索模型把一些很可能相关的候选也加入到prompt中,给模型更多参考

融合了多种语言、长度、格式的query

最终大概有150M合成数据,然后用余弦相似度大于0.7的这个方法来过滤高质量的数据12M对用于二阶段的训练

六、效果

在一些benchmark上超过一些embedding的开源和商业模型"

附上链接:Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models

相关推荐
会飞的老朱1 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º2 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee5 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
你撅嘴真丑5 小时前
第九章-数字三角形
算法
聆风吟º5 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys5 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56785 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子5 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder5 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮6 小时前
AI 视觉连载1:像素
算法