df.replace(regex={‘b‘: {r‘\s*\.\s*‘: np.nan}})

这段代码 df.replace(regex={'b': {r'\s*\.\s*': np.nan}}) 试图使用正则表达式替换 DataFrame 中 'b' 列的值,具体行为是:替换所有包含零个或多个空白字符以及一个点(.)的值为 np.nan

详细解析:

  1. df.replace() :这是 Pandas 中的 replace() 方法,用于替换 DataFrame 中的值。

  2. regex={'b': {r'\s*\.\s*': np.nan}}

    • regex 参数指定了在替换时使用正则表达式。
    • {'b': {...}} 表示要对列 'b' 进行替换。
    • {r'\s*\.\s*': np.nan} 是一个字典,表示要匹配的正则表达式和替换的值:
      • r'\s*\.\s*' 是正则表达式,用来匹配零个或多个空白字符加一个点(.)再加零个或多个空白字符。
      • np.nan 是替换的目标值,表示缺失值。

替换的操作:

  • 'b' 列中,所有值匹配正则表达式 \s*\.\s* 的地方(即含有点和前后空白字符的地方)都会被替换成 np.nan

示例:

假设你有一个 DataFrame,如下所示:

python 复制代码
import pandas as pd
import numpy as np

# 示例 DataFrame
df = pd.DataFrame({
    'a': [1, 2, 3],
    'b': [' . ', 'x', ' .']
})

# 使用 replace() 方法替换
df = df.replace(regex={'b': {r'\s*\.\s*': np.nan}})

print(df)

输出:

复制代码
   a    b
0  1  NaN
1  2    x
2  3  NaN

解释:

  • 'b' 列中,所有的 " . "" ." 被匹配并替换为 NaN(缺失值)。
  • 其他值(如 'x')没有被匹配,因此保持不变。

总结:

这段代码使用正则表达式 \s*\.\s* 查找 'b' 列中包含零个或多个空白字符和点的值,然后将这些值替换为 NaN

相关推荐
Ulyanov6 小时前
高保真单脉冲雷达导引头回波生成:Python建模与实践
开发语言·python·仿真·系统设计·单脉冲雷达
Li emily6 小时前
成功接入A股实时行情API获取实时市场数据
人工智能·python·金融·fastapi
shehuiyuelaiyuehao7 小时前
22Java对象的比较
java·python·算法
张小凡vip7 小时前
Python异步编程实战:基于async/await的高并发实现
开发语言·python
爱上妖精的尾巴7 小时前
8-10 WPS JSA 正则表达式:贪婪匹配
服务器·前端·javascript·正则表达式·wps·jsa
zcbk01688 小时前
不踩坑!手把手教你在 Mac 上安装 Windows(含分区/虚拟机/驱动解决方案)
python
Dev7z8 小时前
滚压表面强化过程中变形诱导位错演化与梯度晶粒细化机理的数值模拟研究
人工智能·python·算法
吴秋霖8 小时前
apple游客下单逆向分析
python·算法·逆向分析
feasibility.9 小时前
yolo11-seg在ISIC2016医疗数据集训练预测流程(含AOP调loss函数方法)
人工智能·python·yolo·计算机视觉·健康医疗·实例分割·isic2016
L念安dd10 小时前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python