df.replace(regex={‘b‘: {r‘\s*\.\s*‘: np.nan}})

这段代码 df.replace(regex={'b': {r'\s*\.\s*': np.nan}}) 试图使用正则表达式替换 DataFrame 中 'b' 列的值,具体行为是:替换所有包含零个或多个空白字符以及一个点(.)的值为 np.nan

详细解析:

  1. df.replace() :这是 Pandas 中的 replace() 方法,用于替换 DataFrame 中的值。

  2. regex={'b': {r'\s*\.\s*': np.nan}}

    • regex 参数指定了在替换时使用正则表达式。
    • {'b': {...}} 表示要对列 'b' 进行替换。
    • {r'\s*\.\s*': np.nan} 是一个字典,表示要匹配的正则表达式和替换的值:
      • r'\s*\.\s*' 是正则表达式,用来匹配零个或多个空白字符加一个点(.)再加零个或多个空白字符。
      • np.nan 是替换的目标值,表示缺失值。

替换的操作:

  • 'b' 列中,所有值匹配正则表达式 \s*\.\s* 的地方(即含有点和前后空白字符的地方)都会被替换成 np.nan

示例:

假设你有一个 DataFrame,如下所示:

python 复制代码
import pandas as pd
import numpy as np

# 示例 DataFrame
df = pd.DataFrame({
    'a': [1, 2, 3],
    'b': [' . ', 'x', ' .']
})

# 使用 replace() 方法替换
df = df.replace(regex={'b': {r'\s*\.\s*': np.nan}})

print(df)

输出:

复制代码
   a    b
0  1  NaN
1  2    x
2  3  NaN

解释:

  • 'b' 列中,所有的 " . "" ." 被匹配并替换为 NaN(缺失值)。
  • 其他值(如 'x')没有被匹配,因此保持不变。

总结:

这段代码使用正则表达式 \s*\.\s* 查找 'b' 列中包含零个或多个空白字符和点的值,然后将这些值替换为 NaN

相关推荐
2501_920047033 分钟前
python-网络编程
开发语言·网络·python
赵英英俊1 小时前
Python day28
python
F_D_Z1 小时前
【解决办法】pip install albumentations安装下载遇19kB/s超级慢细水管
linux·运维·python·pip
mortimer1 小时前
PyInstaller打包踩坑记:从静默崩溃到柳暗花明
人工智能·python·github
Monkey的自我迭代3 小时前
python线性回归:从原理到实战应用
开发语言·python·机器学习
2202_756749693 小时前
05 OpenCV--图像预处理之图像轮廓、直方图均衡化、模板匹配、霍夫变化、图像亮度变化、形态学变化
图像处理·人工智能·python·opencv·计算机视觉
费弗里4 小时前
Python全栈应用搭建神器magic-dash 0.4新版本介绍
python·dash
LiuYiCheng1234565 小时前
Python游戏开发:Pygame全面指南与实战
python·pygame
魔障阿Q5 小时前
华为310P3模型转换及python推理
人工智能·python·深度学习·yolo·计算机视觉·华为