df.replace(regex={‘b‘: {r‘\s*\.\s*‘: np.nan}})

这段代码 df.replace(regex={'b': {r'\s*\.\s*': np.nan}}) 试图使用正则表达式替换 DataFrame 中 'b' 列的值,具体行为是:替换所有包含零个或多个空白字符以及一个点(.)的值为 np.nan

详细解析:

  1. df.replace() :这是 Pandas 中的 replace() 方法,用于替换 DataFrame 中的值。

  2. regex={'b': {r'\s*\.\s*': np.nan}}

    • regex 参数指定了在替换时使用正则表达式。
    • {'b': {...}} 表示要对列 'b' 进行替换。
    • {r'\s*\.\s*': np.nan} 是一个字典,表示要匹配的正则表达式和替换的值:
      • r'\s*\.\s*' 是正则表达式,用来匹配零个或多个空白字符加一个点(.)再加零个或多个空白字符。
      • np.nan 是替换的目标值,表示缺失值。

替换的操作:

  • 'b' 列中,所有值匹配正则表达式 \s*\.\s* 的地方(即含有点和前后空白字符的地方)都会被替换成 np.nan

示例:

假设你有一个 DataFrame,如下所示:

python 复制代码
import pandas as pd
import numpy as np

# 示例 DataFrame
df = pd.DataFrame({
    'a': [1, 2, 3],
    'b': [' . ', 'x', ' .']
})

# 使用 replace() 方法替换
df = df.replace(regex={'b': {r'\s*\.\s*': np.nan}})

print(df)

输出:

   a    b
0  1  NaN
1  2    x
2  3  NaN

解释:

  • 'b' 列中,所有的 " . "" ." 被匹配并替换为 NaN(缺失值)。
  • 其他值(如 'x')没有被匹配,因此保持不变。

总结:

这段代码使用正则表达式 \s*\.\s* 查找 'b' 列中包含零个或多个空白字符和点的值,然后将这些值替换为 NaN

相关推荐
databook5 分钟前
manim边学边做--线性变换的场景类
python·动效
AmazingKO7 分钟前
【够用就好008】开新坑自学esb32烧录进军物联网和嵌入式
人工智能·python·物联网·chatgpt·github·方方上土·aigc创意人竹相左边
rocksun9 分钟前
UNITTEST: PYTHON开发者内置的安全网
python
精灵vector20 分钟前
【Agent的革命之路——LangGraph】如何使用config
人工智能·python·aigc
凌小添20 分钟前
Python入门教程丨3.6 代码打包
python
全栈派森39 分钟前
Flask or Django?开发者の灵魂拷问:要自由还是求省心?
python·flask
NoviceLearningRecord1 小时前
解决webdriver和Chrome不匹配的办法
前端·chrome·python
max5006001 小时前
用python 的 sentiment intensity analyzer的情感分析器,将用户评论进行分类
人工智能·python·分类
性感博主在线瞎搞1 小时前
【神经网络】python实现神经网络(一)——数据集获取
人工智能·python·深度学习·神经网络·机器学习·手写数字识别
not 程序员2 小时前
cmd中有cl但是conda虚拟环境没用cl
开发语言·python·conda