df.replace(regex={‘b‘: {r‘\s*\.\s*‘: np.nan}})

这段代码 df.replace(regex={'b': {r'\s*\.\s*': np.nan}}) 试图使用正则表达式替换 DataFrame 中 'b' 列的值,具体行为是:替换所有包含零个或多个空白字符以及一个点(.)的值为 np.nan

详细解析:

  1. df.replace() :这是 Pandas 中的 replace() 方法,用于替换 DataFrame 中的值。

  2. regex={'b': {r'\s*\.\s*': np.nan}}

    • regex 参数指定了在替换时使用正则表达式。
    • {'b': {...}} 表示要对列 'b' 进行替换。
    • {r'\s*\.\s*': np.nan} 是一个字典,表示要匹配的正则表达式和替换的值:
      • r'\s*\.\s*' 是正则表达式,用来匹配零个或多个空白字符加一个点(.)再加零个或多个空白字符。
      • np.nan 是替换的目标值,表示缺失值。

替换的操作:

  • 'b' 列中,所有值匹配正则表达式 \s*\.\s* 的地方(即含有点和前后空白字符的地方)都会被替换成 np.nan

示例:

假设你有一个 DataFrame,如下所示:

python 复制代码
import pandas as pd
import numpy as np

# 示例 DataFrame
df = pd.DataFrame({
    'a': [1, 2, 3],
    'b': [' . ', 'x', ' .']
})

# 使用 replace() 方法替换
df = df.replace(regex={'b': {r'\s*\.\s*': np.nan}})

print(df)

输出:

复制代码
   a    b
0  1  NaN
1  2    x
2  3  NaN

解释:

  • 'b' 列中,所有的 " . "" ." 被匹配并替换为 NaN(缺失值)。
  • 其他值(如 'x')没有被匹配,因此保持不变。

总结:

这段代码使用正则表达式 \s*\.\s* 查找 'b' 列中包含零个或多个空白字符和点的值,然后将这些值替换为 NaN

相关推荐
ValhallaCoder12 分钟前
hot100-栈
数据结构·python·算法·
MediaTea4 小时前
Python:生成器表达式详解
开发语言·python
-To be number.wan4 小时前
Python数据分析:SciPy科学计算
python·学习·数据分析
Dxy12393102164 小时前
DataFrame数据修改:从基础操作到高效实践的完整指南
python·dataframe
overmind6 小时前
oeasy Python 115 列表弹栈用pop删除指定索引
开发语言·python
hnxaoli6 小时前
win10程序(十六)通达信参数清洗器
开发语言·python·小程序·股票·炒股
电饭叔7 小时前
文本为 “ok”、前景色为白色、背景色为红色,且点击后触发 processOK 回调函数的 tkinter 按钮
开发语言·python
雷电法拉珑8 小时前
财务数据批量采集
linux·前端·python
shangjian0079 小时前
Python基础-With关键字
python
zchxzl9 小时前
亲测2026京津冀可靠广告展会
大数据·人工智能·python