df.replace(regex={‘b‘: {r‘\s*\.\s*‘: np.nan}})

这段代码 df.replace(regex={'b': {r'\s*\.\s*': np.nan}}) 试图使用正则表达式替换 DataFrame 中 'b' 列的值,具体行为是:替换所有包含零个或多个空白字符以及一个点(.)的值为 np.nan

详细解析:

  1. df.replace() :这是 Pandas 中的 replace() 方法,用于替换 DataFrame 中的值。

  2. regex={'b': {r'\s*\.\s*': np.nan}}

    • regex 参数指定了在替换时使用正则表达式。
    • {'b': {...}} 表示要对列 'b' 进行替换。
    • {r'\s*\.\s*': np.nan} 是一个字典,表示要匹配的正则表达式和替换的值:
      • r'\s*\.\s*' 是正则表达式,用来匹配零个或多个空白字符加一个点(.)再加零个或多个空白字符。
      • np.nan 是替换的目标值,表示缺失值。

替换的操作:

  • 'b' 列中,所有值匹配正则表达式 \s*\.\s* 的地方(即含有点和前后空白字符的地方)都会被替换成 np.nan

示例:

假设你有一个 DataFrame,如下所示:

python 复制代码
import pandas as pd
import numpy as np

# 示例 DataFrame
df = pd.DataFrame({
    'a': [1, 2, 3],
    'b': [' . ', 'x', ' .']
})

# 使用 replace() 方法替换
df = df.replace(regex={'b': {r'\s*\.\s*': np.nan}})

print(df)

输出:

复制代码
   a    b
0  1  NaN
1  2    x
2  3  NaN

解释:

  • 'b' 列中,所有的 " . "" ." 被匹配并替换为 NaN(缺失值)。
  • 其他值(如 'x')没有被匹配,因此保持不变。

总结:

这段代码使用正则表达式 \s*\.\s* 查找 'b' 列中包含零个或多个空白字符和点的值,然后将这些值替换为 NaN

相关推荐
忘却的旋律dw34 分钟前
使用LLM模型的tokenizer报错AttributeError: ‘dict‘ object has no attribute ‘model_type‘
人工智能·pytorch·python
20岁30年经验的码农42 分钟前
Java RabbitMQ 实战指南
java·开发语言·python
studytosky2 小时前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
上不如老下不如小3 小时前
2025年第七届全国高校计算机能力挑战赛初赛 Python组 编程题汇总
开发语言·python·算法
Q_Q5110082853 小时前
python+django/flask的结合人脸识别和实名认证的校园论坛系统
spring boot·python·django·flask·node.js·php
Q_Q5110082853 小时前
python+django/flask的选课系统与课程评价整合系统
spring boot·python·django·flask·node.js·php
charlie1145141913 小时前
勇闯前后端Week2:后端基础——Flask API速览
笔记·后端·python·学习·flask·教程
豐儀麟阁贵3 小时前
8.2异常的抛出与捕捉
java·开发语言·python
interception3 小时前
爬虫js逆向,jsdom补环境,抖音,a_bogus
javascript·爬虫·python
林炳然4 小时前
Python-Basic Day-5 函数-生成器&装饰器
python