df.replace(regex={‘b‘: {r‘\s*\.\s*‘: np.nan}})

这段代码 df.replace(regex={'b': {r'\s*\.\s*': np.nan}}) 试图使用正则表达式替换 DataFrame 中 'b' 列的值,具体行为是:替换所有包含零个或多个空白字符以及一个点(.)的值为 np.nan

详细解析:

  1. df.replace() :这是 Pandas 中的 replace() 方法,用于替换 DataFrame 中的值。

  2. regex={'b': {r'\s*\.\s*': np.nan}}

    • regex 参数指定了在替换时使用正则表达式。
    • {'b': {...}} 表示要对列 'b' 进行替换。
    • {r'\s*\.\s*': np.nan} 是一个字典,表示要匹配的正则表达式和替换的值:
      • r'\s*\.\s*' 是正则表达式,用来匹配零个或多个空白字符加一个点(.)再加零个或多个空白字符。
      • np.nan 是替换的目标值,表示缺失值。

替换的操作:

  • 'b' 列中,所有值匹配正则表达式 \s*\.\s* 的地方(即含有点和前后空白字符的地方)都会被替换成 np.nan

示例:

假设你有一个 DataFrame,如下所示:

python 复制代码
import pandas as pd
import numpy as np

# 示例 DataFrame
df = pd.DataFrame({
    'a': [1, 2, 3],
    'b': [' . ', 'x', ' .']
})

# 使用 replace() 方法替换
df = df.replace(regex={'b': {r'\s*\.\s*': np.nan}})

print(df)

输出:

复制代码
   a    b
0  1  NaN
1  2    x
2  3  NaN

解释:

  • 'b' 列中,所有的 " . "" ." 被匹配并替换为 NaN(缺失值)。
  • 其他值(如 'x')没有被匹配,因此保持不变。

总结:

这段代码使用正则表达式 \s*\.\s* 查找 'b' 列中包含零个或多个空白字符和点的值,然后将这些值替换为 NaN

相关推荐
用户12039112947268 分钟前
打破信息壁垒:手把手教你实现DeepSeek大模型的天气查询功能
python·openai
鱼骨不是鱼翅33 分钟前
力扣hot100----1day
python·算法·leetcode·职场和发展
2501_9412362134 分钟前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
程序猿_极客36 分钟前
【2025 最新】 Python 安装教程 以及 Pycharm 安装教程(超详细图文指南,附常见问题解决)
开发语言·python·pycharm·python安装以及配置
b***666139 分钟前
Python 爬虫实战案例 - 获取社交平台事件热度并进行影响分析
开发语言·爬虫·python
chushiyunen1 小时前
django使用笔记
笔记·python·django
2501_941111341 小时前
实战:用OpenCV和Python进行人脸识别
jvm·数据库·python
ada7_1 小时前
LeetCode(python)——73.矩阵置零
python·算法·leetcode·矩阵
程序员爱钓鱼1 小时前
Python编程实战:用好 pdb 和 logging,程序再也不黑箱运行了
后端·python·trae
程序员爱钓鱼1 小时前
Python编程实战:从 timeit 到 cProfile,一次搞懂代码为什么慢
后端·python·trae