697: Edit Distance

我们定义 dp[i][j] 为将字符串 A[0..i-1] 转换为 B[0..j-1] 的最小操作数

状态转移

通过动态规划的思想,我们可以使用 状态转移方程 来计算 dp[i][j]。具体来说,dp[i][j] 的值可以由以下几种操作得到:

  1. 如果 A[i-1] == B[j-1]

    • 如果 A[i-1]B[j-1] 相同,说明不需要对这两个字符做任何操作,那么我们只需从 dp[i-1][j-1] 继承结果:

    dp[i][j] = dp[i-1][j-1]

  2. 如果 A[i-1] != B[j-1]

    • 删除操作 :从 A[0..i-1] 删除一个字符,使其变为 A[0..i-2],即 dp[i][j] = dp[i-1][j] + 1
    • 插入操作 :从 B[0..j-1] 插入一个字符,变为 B[0..j-2],即 dp[i][j] = dp[i][j-1] + 1
    • 替换操作 :将 A[i-1] 替换为 B[j-1],即 dp[i][j] = dp[i-1][j-1] + 1
  3. 选择最小操作数

    • 由于我们需要最少的操作数,因此 dp[i][j] 是以上三种操作中最小的操作数。
边界条件

在动态规划的过程中,我们需要先初始化边界条件:

  • dp[i][0] :将 A[0..i-1] 转换为空字符串,需要 i 次删除操作:

    dp[i][0] = i

  • dp[0][j] :将空字符串转换为 B[0..j-1],需要 j 次插入操作:

    dp[0][j] = j

cpp 复制代码
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e4+4;
int dp[N][N];
int main() {
	string a, b;
	cin >> a >> b;
	int m = a.size();
	int n = b.size();
	for (int i = 0; i <= m; i++) {
		dp[i][0] = i;
	}
	for (int j = 0; j <= n; j++) {
		dp[0][j] = j;
	}

	for (int i = 1; i <= m; i++) {
		for (int j = 1; j <= n; j++) {
			if (a[i - 1] == b[j - 1]) {
				dp[i][j] = dp[i - 1][j - 1];
			}
			else {
				dp[i][j] = min({
					dp[i - 1][j],dp[i][j - 1],dp[i - 1][j - 1]
					}) + 1;
			}
		}
	}
	cout << dp[m][n] << endl;
	return 0;
}
相关推荐
煤球王子1 天前
学而时习之:C++语言基础了解
c++
承渊政道1 天前
算法复杂度
c语言·数据结构·c++·算法·visual studio
千年奇葩1 天前
Unity性能优化之:利用CUDA加速Unity实现大规模并行计算。从环境搭建到实战案例
c++·人工智能·unity·游戏引擎·cuda
AA陈超1 天前
虚幻引擎5 GAS开发俯视角RPG游戏 P06-25 属性信息数据资产
c++·游戏·ue5·游戏引擎·虚幻
_dindong1 天前
Linux网络编程:进程间关系和守护进程
linux·运维·服务器·网络·c++·学习
zhilin_tang1 天前
如何写一个WebRTC ACE音频应用处理模块
linux·c语言·c++
Skrrapper1 天前
【C++】C++11都有什么新特性?
数据结构·c++
小丁努力不焦虑1 天前
c++基本语法
java·c++·算法
qq_310658511 天前
webrtc代码走读(五)-QOS-FEC原理
网络·c++·webrtc
Want5951 天前
C/C++动态爱心
c++