697: Edit Distance

我们定义 dp[i][j] 为将字符串 A[0..i-1] 转换为 B[0..j-1] 的最小操作数

状态转移

通过动态规划的思想,我们可以使用 状态转移方程 来计算 dp[i][j]。具体来说,dp[i][j] 的值可以由以下几种操作得到:

  1. 如果 A[i-1] == B[j-1]

    • 如果 A[i-1]B[j-1] 相同,说明不需要对这两个字符做任何操作,那么我们只需从 dp[i-1][j-1] 继承结果:

    dp[i][j] = dp[i-1][j-1]

  2. 如果 A[i-1] != B[j-1]

    • 删除操作 :从 A[0..i-1] 删除一个字符,使其变为 A[0..i-2],即 dp[i][j] = dp[i-1][j] + 1
    • 插入操作 :从 B[0..j-1] 插入一个字符,变为 B[0..j-2],即 dp[i][j] = dp[i][j-1] + 1
    • 替换操作 :将 A[i-1] 替换为 B[j-1],即 dp[i][j] = dp[i-1][j-1] + 1
  3. 选择最小操作数

    • 由于我们需要最少的操作数,因此 dp[i][j] 是以上三种操作中最小的操作数。
边界条件

在动态规划的过程中,我们需要先初始化边界条件:

  • dp[i][0] :将 A[0..i-1] 转换为空字符串,需要 i 次删除操作:

    dp[i][0] = i

  • dp[0][j] :将空字符串转换为 B[0..j-1],需要 j 次插入操作:

    dp[0][j] = j

cpp 复制代码
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e4+4;
int dp[N][N];
int main() {
	string a, b;
	cin >> a >> b;
	int m = a.size();
	int n = b.size();
	for (int i = 0; i <= m; i++) {
		dp[i][0] = i;
	}
	for (int j = 0; j <= n; j++) {
		dp[0][j] = j;
	}

	for (int i = 1; i <= m; i++) {
		for (int j = 1; j <= n; j++) {
			if (a[i - 1] == b[j - 1]) {
				dp[i][j] = dp[i - 1][j - 1];
			}
			else {
				dp[i][j] = min({
					dp[i - 1][j],dp[i][j - 1],dp[i - 1][j - 1]
					}) + 1;
			}
		}
	}
	cout << dp[m][n] << endl;
	return 0;
}
相关推荐
YuforiaCode2 分钟前
第十二届蓝桥杯 2021 C/C++组 直线
c语言·c++·蓝桥杯
草莓啵啵~1 小时前
搜索二叉树-key的搜索模型
数据结构·c++
共享家95271 小时前
深入理解C++ 中的list容器
c++
孞㐑¥1 小时前
C++11介绍
开发语言·c++·经验分享·笔记
云小逸1 小时前
【QQMusic项目界面开发复习笔记】第二章
c++·qt
李匠20241 小时前
C++ RPC以及cmake
网络·c++·网络协议·rpc
再睡一夏就好2 小时前
Linux常见工具如yum、vim、gcc、gdb的基本使用,以及编译过程和动静态链接的区别
linux·服务器·c语言·c++·笔记
YHY_13s2 小时前
访问者模式
c++·访问者模式
我也不曾来过12 小时前
list底层原理
数据结构·c++·list
A charmer3 小时前
C++ 日志系统实战第三步:熟悉掌握各种设计模式
c++·日志系统