【HUAWEI】HCIP-AI-MindSpore Developer V1.0 | 第一章 神经网络基础( 3 循环神经网络 ) | 学习笔记

目录

[第一章 神经网络基础](#第一章 神经网络基础)

[3 循环神经网络](#3 循环神经网络)

[▲ 循环神经网络简介](#▲ 循环神经网络简介)

标准RNN结构

多层双向循环神经网络

BPTT反向传播求导

标准RNN结构的问题

[▲ 循环神经网络应用](#▲ 循环神经网络应用)

[▲ 循环神经网络变种](#▲ 循环神经网络变种)

长短期记忆网络

GRU



第一章 神经网络基础

3 循环神经网络

▲ 循环神经网络简介

循环神经网络( Recurrent Neural Network ,简称 RNN )是一种通过隐藏层节点周期性 的连接,来捕捉++++序列化++++数据中动态信息的神经网络,可以对序列化的数据进行分类。

标准RNN结构
多层双向循环神经网络
BPTT反向传播求导
标准RNN结构的问题

解决了信息记忆的问题,但是对长时间记忆的信息会衰减。很多任务需要保存长时间的记忆信息。

基本的循环神经网络存在梯度爆炸和梯度消失问题,并不能真正的处理好长距离的依赖。如下:

▲ 循环神经网络应用

循环神经网络的应用

▲ 循环神经网络变种

长短期记忆网络

长短期记忆网络( Long Short Term Memory , LSTM ):一种特殊的 RNN 类型,可以学习长期依赖信息。

LSTM 的记忆单元和标准 RNN 一样,负责记录之前的信息 。

遗忘门结构通过分析上一时刻的输出,和当前时刻的输入,计算出遗忘系数 。

输入门结构通过分析上一时刻的输出,和当前时刻的输入,计算出输入系数和需要新记忆的内容。

信息更新

输出门

GRU

****门控循环单元( Gated Recurrent Unit , GRU )****是简化版的 LSTM 。因为 LSTM 中,遗忘门和输入门的关系互补,所以 GRU 用一个门代替。

在 LSTM 中引入了三个门函数: ++++输入门++++ ++++遗忘门++++ ++++输出门++++ 来控制输入值、记忆值和输出值

GRU 模型中只有两个门:分别是 ++++更新门++++ ++++重置门++++

说明:本文内容来源于网络,仅作为学习用途,如有侵权,请联系作者删除。

相关推荐
孤狼warrior1 分钟前
我想拥有作家的思想 循环神经网络及变型
人工智能·rnn·深度学习·神经网络·lstm
极客BIM工作室15 分钟前
BERT模型中词汇表向量与网络权重:从属关系与不可替代的功能分工
人工智能·自然语言处理·bert
八年。。15 分钟前
Ai笔记(二)-PyTorch 中各类数据类型(numpy array、list、FloatTensor、LongTensor、Tensor)的区别
人工智能·pytorch·笔记
不羁的木木27 分钟前
【开源鸿蒙跨平台开发学习笔记】Day02:React Native 开发 HarmonyOS-环境搭建篇(填坑记录)
笔记·学习·react native·harmonyos·har
百***688228 分钟前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
许泽宇的技术分享30 分钟前
从零到一,开源大模型的“民主化“之路:一份让AI触手可及的实战宝典
人工智能·开源·大模型
文慧的科技江湖32 分钟前
开源 | 企业级开源人工智能训练推理平台 - GPU池化平台 - GPU算力平台 - GPU调度平台 - AI人工智能操作系统
人工智能·开源·gpu池化·推理平台·训练平台·gpu管理平台·ai人工智能操作系统
东皇太星32 分钟前
VGGNet (2014)(卷积神经网络)
人工智能·神经网络·cnn·卷积神经网络
Dev7z34 分钟前
智能情感识别:基于USB摄像头和深度学习的实时面部表情分析系统
人工智能·深度学习
IT_陈寒36 分钟前
JavaScript 闭包通关指南:从作用域链到内存管理的8个核心知识点
前端·人工智能·后端