【HUAWEI】HCIP-AI-MindSpore Developer V1.0 | 第一章 神经网络基础( 3 循环神经网络 ) | 学习笔记

目录

[第一章 神经网络基础](#第一章 神经网络基础)

[3 循环神经网络](#3 循环神经网络)

[▲ 循环神经网络简介](#▲ 循环神经网络简介)

标准RNN结构

多层双向循环神经网络

BPTT反向传播求导

标准RNN结构的问题

[▲ 循环神经网络应用](#▲ 循环神经网络应用)

[▲ 循环神经网络变种](#▲ 循环神经网络变种)

长短期记忆网络

GRU



第一章 神经网络基础

3 循环神经网络

▲ 循环神经网络简介

循环神经网络( Recurrent Neural Network ,简称 RNN )是一种通过隐藏层节点周期性 的连接,来捕捉++++序列化++++数据中动态信息的神经网络,可以对序列化的数据进行分类。

标准RNN结构
多层双向循环神经网络
BPTT反向传播求导
标准RNN结构的问题

解决了信息记忆的问题,但是对长时间记忆的信息会衰减。很多任务需要保存长时间的记忆信息。

基本的循环神经网络存在梯度爆炸和梯度消失问题,并不能真正的处理好长距离的依赖。如下:

▲ 循环神经网络应用

循环神经网络的应用

▲ 循环神经网络变种

长短期记忆网络

长短期记忆网络( Long Short Term Memory , LSTM ):一种特殊的 RNN 类型,可以学习长期依赖信息。

LSTM 的记忆单元和标准 RNN 一样,负责记录之前的信息 。

遗忘门结构通过分析上一时刻的输出,和当前时刻的输入,计算出遗忘系数 。

输入门结构通过分析上一时刻的输出,和当前时刻的输入,计算出输入系数和需要新记忆的内容。

信息更新

输出门

GRU

****门控循环单元( Gated Recurrent Unit , GRU )****是简化版的 LSTM 。因为 LSTM 中,遗忘门和输入门的关系互补,所以 GRU 用一个门代替。

在 LSTM 中引入了三个门函数: ++++输入门++++ ++++遗忘门++++ ++++输出门++++ 来控制输入值、记忆值和输出值

GRU 模型中只有两个门:分别是 ++++更新门++++ ++++重置门++++

说明:本文内容来源于网络,仅作为学习用途,如有侵权,请联系作者删除。

相关推荐
Echo_NGC22373 小时前
【DDPM 扩散模型】Part 7:最后总结!Denoising Diffusion Probabilistic Models论文全维度详解
人工智能·深度学习·神经网络·扩散模型·ddpm·高斯噪声
winfield8213 小时前
推荐/搜索系统的召回、精排、粗排、打散这四个环节都是做什么的?
大数据·人工智能
540_5403 小时前
ADVANCE Day23
人工智能·python·机器学习
有为少年3 小时前
数据增强在小型卷积神经网络中的有效性探究
人工智能·深度学习·神经网络·机器学习·cnn
雪花desu3 小时前
什么是融入 CoT 写 prompt
人工智能·语言模型
AIBox3653 小时前
ChatGPT 中文版镜像官网,GPT5.2使用教程(2025年 12 月更新)
人工智能
测试人社区-千羽3 小时前
生物识别系统的测试安全性与漏洞防护实践
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
d111111111d3 小时前
STM32得中断服务函数,为什么不能有返回值
笔记·stm32·单片机·嵌入式硬件·学习
2501_924794903 小时前
企业AI转型为何难?——从“不敢用”到“用得稳”的路径重构
大数据·人工智能·重构
阿蒙Amon3 小时前
JavaScript学习笔记:12.类
javascript·笔记·学习