【HUAWEI】HCIP-AI-MindSpore Developer V1.0 | 第一章 神经网络基础( 3 循环神经网络 ) | 学习笔记

目录

[第一章 神经网络基础](#第一章 神经网络基础)

[3 循环神经网络](#3 循环神经网络)

[▲ 循环神经网络简介](#▲ 循环神经网络简介)

标准RNN结构

多层双向循环神经网络

BPTT反向传播求导

标准RNN结构的问题

[▲ 循环神经网络应用](#▲ 循环神经网络应用)

[▲ 循环神经网络变种](#▲ 循环神经网络变种)

长短期记忆网络

GRU



第一章 神经网络基础

3 循环神经网络

▲ 循环神经网络简介

循环神经网络( Recurrent Neural Network ,简称 RNN )是一种通过隐藏层节点周期性 的连接,来捕捉++++序列化++++数据中动态信息的神经网络,可以对序列化的数据进行分类。

标准RNN结构
多层双向循环神经网络
BPTT反向传播求导
标准RNN结构的问题

解决了信息记忆的问题,但是对长时间记忆的信息会衰减。很多任务需要保存长时间的记忆信息。

基本的循环神经网络存在梯度爆炸和梯度消失问题,并不能真正的处理好长距离的依赖。如下:

▲ 循环神经网络应用

循环神经网络的应用

▲ 循环神经网络变种

长短期记忆网络

长短期记忆网络( Long Short Term Memory , LSTM ):一种特殊的 RNN 类型,可以学习长期依赖信息。

LSTM 的记忆单元和标准 RNN 一样,负责记录之前的信息 。

遗忘门结构通过分析上一时刻的输出,和当前时刻的输入,计算出遗忘系数 。

输入门结构通过分析上一时刻的输出,和当前时刻的输入,计算出输入系数和需要新记忆的内容。

信息更新

输出门

GRU

****门控循环单元( Gated Recurrent Unit , GRU )****是简化版的 LSTM 。因为 LSTM 中,遗忘门和输入门的关系互补,所以 GRU 用一个门代替。

在 LSTM 中引入了三个门函数: ++++输入门++++ ++++遗忘门++++ ++++输出门++++ 来控制输入值、记忆值和输出值

GRU 模型中只有两个门:分别是 ++++更新门++++ ++++重置门++++

说明:本文内容来源于网络,仅作为学习用途,如有侵权,请联系作者删除。

相关推荐
reddingtons10 分钟前
Illustrator 3D Mockup:零建模,矢量包装一键“上架”实拍
人工智能·ui·3d·aigc·illustrator·设计师·平面设计
孟祥_成都12 分钟前
前端角度学 AI - 15 分钟入门 Python
前端·人工智能
Java中文社群25 分钟前
太顶了!全网最全的600+图片生成玩法!
人工智能
阿里云大数据AI技术31 分钟前
EMR AI 助手开启公测:用 AI 重塑大数据运维,更简单、更智能
人工智能
言之。34 分钟前
AI时代的UI发展
人工智能·ui
拖拖7651 小时前
从“死”文档到“活”助手:Paper2Agent 如何将科研论文一键转化为可执行 AI
人工智能
closejudge1 小时前
部署siyuan笔记docker问题记录
笔记
攻城狮7号1 小时前
告别显存焦虑:阿里开源 Z-Image 如何用 6B 参数立足AI 绘画时代
人工智能·ai 绘画·qwen-image·z-image-turbo·阿里开源模型
Christo31 小时前
ICML-2019《Optimal Transport for structured data with application on graphs》
人工智能·算法·机器学习·数据挖掘
阿杰学AI1 小时前
AI核心知识24——大语言模型之AI 幻觉(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·hallucination·ai幻觉