【HUAWEI】HCIP-AI-MindSpore Developer V1.0 | 第一章 神经网络基础( 3 循环神经网络 ) | 学习笔记

目录

[第一章 神经网络基础](#第一章 神经网络基础)

[3 循环神经网络](#3 循环神经网络)

[▲ 循环神经网络简介](#▲ 循环神经网络简介)

标准RNN结构

多层双向循环神经网络

BPTT反向传播求导

标准RNN结构的问题

[▲ 循环神经网络应用](#▲ 循环神经网络应用)

[▲ 循环神经网络变种](#▲ 循环神经网络变种)

长短期记忆网络

GRU



第一章 神经网络基础

3 循环神经网络

▲ 循环神经网络简介

循环神经网络( Recurrent Neural Network ,简称 RNN )是一种通过隐藏层节点周期性 的连接,来捕捉++++序列化++++数据中动态信息的神经网络,可以对序列化的数据进行分类。

标准RNN结构
多层双向循环神经网络
BPTT反向传播求导
标准RNN结构的问题

解决了信息记忆的问题,但是对长时间记忆的信息会衰减。很多任务需要保存长时间的记忆信息。

基本的循环神经网络存在梯度爆炸和梯度消失问题,并不能真正的处理好长距离的依赖。如下:

▲ 循环神经网络应用

循环神经网络的应用

▲ 循环神经网络变种

长短期记忆网络

长短期记忆网络( Long Short Term Memory , LSTM ):一种特殊的 RNN 类型,可以学习长期依赖信息。

LSTM 的记忆单元和标准 RNN 一样,负责记录之前的信息 。

遗忘门结构通过分析上一时刻的输出,和当前时刻的输入,计算出遗忘系数 。

输入门结构通过分析上一时刻的输出,和当前时刻的输入,计算出输入系数和需要新记忆的内容。

信息更新

输出门

GRU

****门控循环单元( Gated Recurrent Unit , GRU )****是简化版的 LSTM 。因为 LSTM 中,遗忘门和输入门的关系互补,所以 GRU 用一个门代替。

在 LSTM 中引入了三个门函数: ++++输入门++++ ++++遗忘门++++ ++++输出门++++ 来控制输入值、记忆值和输出值

GRU 模型中只有两个门:分别是 ++++更新门++++ ++++重置门++++

说明:本文内容来源于网络,仅作为学习用途,如有侵权,请联系作者删除。

相关推荐
芝士爱知识a1 分钟前
2026年教资备考数字化生存指南:主流App深度测评与AI技术应用分析
人工智能·教资·ai教育·教育技术·教资面试·app测评·2026教资
AIArchivist1 分钟前
攻坚肝胆疑难病例,AI成为诊疗决策的“智慧大脑”
人工智能
jake don7 分钟前
GPU服务器搭建大模型指南
服务器·人工智能
JicasdC123asd21 分钟前
【深度学习实战】基于Mask-RCNN和HRNetV2P的腰果智能分级系统_1
人工智能·深度学习
星爷AG I36 分钟前
9-28 视觉工作记忆(AGI基础理论)
人工智能·计算机视觉·agi
陈天伟教授42 分钟前
人工智能应用- 语言理解:07.大语言模型
人工智能·深度学习·语言模型
岱宗夫up1 小时前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
程序猿阿伟1 小时前
《游戏AI训练模拟环境:高保真可加速构建实战指南》
人工智能·游戏
花月mmc1 小时前
CanMV K230 波形识别——整体部署(4)
人工智能·python·嵌入式硬件·深度学习·信号处理
tel_182175397671 小时前
AOI全自动视觉检测生活用纸表面缺陷检测
人工智能·视觉检测·生活