【HUAWEI】HCIP-AI-MindSpore Developer V1.0 | 第一章 神经网络基础( 3 循环神经网络 ) | 学习笔记

目录

[第一章 神经网络基础](#第一章 神经网络基础)

[3 循环神经网络](#3 循环神经网络)

[▲ 循环神经网络简介](#▲ 循环神经网络简介)

标准RNN结构

多层双向循环神经网络

BPTT反向传播求导

标准RNN结构的问题

[▲ 循环神经网络应用](#▲ 循环神经网络应用)

[▲ 循环神经网络变种](#▲ 循环神经网络变种)

长短期记忆网络

GRU



第一章 神经网络基础

3 循环神经网络

▲ 循环神经网络简介

循环神经网络( Recurrent Neural Network ,简称 RNN )是一种通过隐藏层节点周期性 的连接,来捕捉++++序列化++++数据中动态信息的神经网络,可以对序列化的数据进行分类。

标准RNN结构
多层双向循环神经网络
BPTT反向传播求导
标准RNN结构的问题

解决了信息记忆的问题,但是对长时间记忆的信息会衰减。很多任务需要保存长时间的记忆信息。

基本的循环神经网络存在梯度爆炸和梯度消失问题,并不能真正的处理好长距离的依赖。如下:

▲ 循环神经网络应用

循环神经网络的应用

▲ 循环神经网络变种

长短期记忆网络

长短期记忆网络( Long Short Term Memory , LSTM ):一种特殊的 RNN 类型,可以学习长期依赖信息。

LSTM 的记忆单元和标准 RNN 一样,负责记录之前的信息 。

遗忘门结构通过分析上一时刻的输出,和当前时刻的输入,计算出遗忘系数 。

输入门结构通过分析上一时刻的输出,和当前时刻的输入,计算出输入系数和需要新记忆的内容。

信息更新

输出门

GRU

****门控循环单元( Gated Recurrent Unit , GRU )****是简化版的 LSTM 。因为 LSTM 中,遗忘门和输入门的关系互补,所以 GRU 用一个门代替。

在 LSTM 中引入了三个门函数: ++++输入门++++ ++++遗忘门++++ ++++输出门++++ 来控制输入值、记忆值和输出值

GRU 模型中只有两个门:分别是 ++++更新门++++ ++++重置门++++

说明:本文内容来源于网络,仅作为学习用途,如有侵权,请联系作者删除。

相关推荐
新缸中之脑2 分钟前
微调 BERT 实现命名实体识别
人工智能·深度学习·bert
向上的车轮10 分钟前
飞桨PaddlePaddle:入门指南
人工智能·paddlepaddle
Brduino脑机接口技术答疑11 分钟前
脑机接口数据处理连载(十) 经典分类算法(二):神经网络在脑电数据中的适配——基于运动想象BCI的实战实现
神经网络·分类·数据挖掘
一招定胜负20 分钟前
OpenCV实战:DNN风格迁移与CSRT物体追踪
人工智能·opencv·dnn
deng120427 分钟前
【yolov1:开启目标检测的全新纪元】
人工智能·yolo·目标检测
宇擎智脑科技28 分钟前
A2UI 技术原理深度解析:AI Agent 如何安全生成富交互 UI
人工智能·a2ui
kicikng29 分钟前
智能体来了(西南总部)完整拆解:AI Agent 指挥官 + AI调度官架构图
大数据·人工智能·多智能体系统·ai agent指挥官·ai调度官
夜斗小神社44 分钟前
【黑马RAG与Agent智能体项目】(二)提示词工程
人工智能
C++ 老炮儿的技术栈1 小时前
不调用C++/C的字符串库函数,编写函数strcmp
c语言·开发语言·c++·人工智能·windows·git·visual studio
码农三叔1 小时前
(6-1)手部、足部与末端执行器设计:仿生手设计
人工智能·架构·机器人·人形机器人