锂电池SOC估计 | Matlab基于CNN神经网络的锂电池锂电池SOC估计,附锂电池最新文章汇集

锂电池SOC估计 | Matlab基于CNN神经网络的锂电池锂电池SOC估计,附锂电池最新文章汇集

目录

    • [锂电池SOC估计 | Matlab基于CNN神经网络的锂电池锂电池SOC估计,附锂电池最新文章汇集](#锂电池SOC估计 | Matlab基于CNN神经网络的锂电池锂电池SOC估计,附锂电池最新文章汇集)

预测效果

基本描述

锂电池SOC估计 | Matlab基于CNN神经网络的锂电池锂电池SOC估计,附锂电池最新文章汇集

运行环境Matlab2023b及以上

Matlab代码,运行环境要求MATLAB版本为2023b及其以上

往期回顾

截至目前,锂电池预测相关文章已发多篇,汇集如下:

锂电池SOH预测

锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集

锂电池SOC估计

锂电池SOC估计 | Matlab基于BP神经网络的锂电池锂电池SOC估计

锂电池SOC估计 | Matlab基于LSTM神经网络的锂电池锂电池SOC估计(待)

锂电池SOC估计 | Matlab基于CNN神经网络的锂电池锂电池SOC估计

高创新 | PyTorch基于改进Informer模型的锂电池SOC估计

锂电池寿命预测

锂电池剩余寿命预测 | Matlab基于CNN-LSTM的锂电池剩余寿命预测(待)

锂电池剩余寿命预测 | 基于BiLSTM-Attention的锂电池剩余寿命预测

锂电池剩余寿命预测 | Matlab基于Transformer-BiGRU的锂电池剩余寿命预测

电池预测 | 第13讲 基于LSTM-Attention的锂电池剩余寿命预测

电池预测 | 第12讲 基于Transformer-GRU的锂电池剩余寿命预测

电池预测 | 第11讲 基于Transformer-BiLSTM的锂电池剩余寿命预测

电池预测 | 第10讲 基于Transformer-LSTM的锂电池剩余寿命预测

电池预测 | 第9讲 基于Transformer的锂电池剩余寿命预测

电池预测 | 第8讲 基于ARIMA的锂电池剩余寿命预测

电池预测 | 第7讲 基于SSA-SVR麻雀算法优化支持向量回归的锂离子电池剩余寿命预测

电池预测 | 第6讲 基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测

电池预测 | 第5讲 基于BiGRU锂电池剩余寿命预测

电池预测 | 第4讲 基于GRU锂电池剩余寿命预测

电池预测 | 第3讲 基于BiLSTM锂电池剩余寿命预测

电池预测 | 第2讲 基于LSTM锂电池剩余寿命预测

电池预测 | 第1讲 基于机器学习的锂电池寿命预测

程序设计

clike 复制代码
%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(P_train, f_, 1, 1, M));
p_test  =  double(reshape(P_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test)';

%%  创建模型
layers = [
   
    imageInputLayer([f_, 1, 1])     % 输入层 输入数据规模[10, 1, 1]

    convolution2dLayer([3, 1], 16)  % 卷积核大小 3*1 生成16张特征图
    batchNormalizationLayer         % 批归一化层
    reluLayer                       % Relu激活层

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
bullnfresh15 小时前
神经网络语言模型(NNLM)的原理与实现
人工智能·神经网络·语言模型
巷95517 小时前
常见的卷积神经网络列举
人工智能·神经网络·cnn
每天都要写算法(努力版)17 小时前
【神经网络与深度学习】VAE 在解码前进行重参数化
人工智能·深度学习·神经网络
埃菲尔铁塔_CV算法19 小时前
基于神经网络的 YOLOv8、MobileNet、HigherHRNet 姿态检测比较研究
人工智能·深度学习·神经网络·yolo·目标检测·机器学习
灏瀚星空1 天前
深度学习之LSTM时序预测:策略原理深度解析及可视化实现
python·深度学习·神经网络·算法·机器学习·数学建模·lstm
每天都要写算法(努力版)1 天前
【神经网络与深度学习】VAE 和 GAN
深度学习·神经网络·生成对抗网络
每天都要写算法(努力版)1 天前
【神经网络与深度学习】VAE 中的先验分布指的是什么
人工智能·深度学习·神经网络
灏瀚星空1 天前
深度学习之LSTM时序预测入门指南:从原理到实战
人工智能·python·深度学习·神经网络·机器学习·数学建模·lstm
奋斗者1号1 天前
神经网络:节点、隐藏层与非线性学习
网络·神经网络·学习
卧式纯绿2 天前
卷积神经网络基础(五)
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·cnn