DCU异构程序——Bank冲突

目录

一、概述

二、程序实现

三、编译运行


一、概述

HIP属于显式编程模型,需要在程序中明确写出并行控制语句,包括数据传输、核函数启动等。核函数是运行在DCU上的函数,在CPU端运行的部分称为主机端(主要是执行管理和启动),DCU端运行的部分称为设备端(用于执行计算)。大概的流程如下图:
HIP程序流程

①主机端将需要并行计算的数据通过hipMemcpy()传递给DCU(将CPU存储的内容传递给DCU的显存);

②调用核函数启动函数hipLaunchKernelGGL()启动DCU,开始执行计算;

③设备端将计算好的结果数据通过hipMemcpy()从DCU复制回CPU。

hipMemcpy()是阻塞式的,数据复制完成后才可以执行后续的程序;hipLanuchKernelGGL()是非阻塞式的,执行完后程序继续向后执行,但是在Kernel没有计算完成之前,最后一个hipMemcpy()是不会开始的,这是由于HIP的Stream机制。

二、程序实现

下面是对Bank冲突的具体实现,sharememBankConflict.cpp:

cpp 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#include <sys/time.h>

#define BDIMX 32
#define BDIMY 16
#define IPAD  4

/*定义计时器*/
struct my_timer
{
    struct timeval start_time, end_time;
    double time_use;
    void start()
    {
        gettimeofday(&start_time,  NULL);
    }
    void stop()
    {
        gettimeofday(&end_time, NULL);
        time_use = (end_time.tv_sec - start_time.tv_sec) * 1.0e6 + end_time.tv_usec - start_time.tv_usec;
    }
};

void printData(char *msg, int *in, const int size)
{
    printf("%s:", msg);
    int sum;

    for(int i = 0; i < size; i++)
    {
        sum += in[i];
    }

    printf("%5d", sum);
    fflush(stdout);
    return;
}

__global__ void setRowReadRow(int *out)
{
    /*静态共享内存*/
    __shared__ int tile[BDIMY][BDIMX];

    unsigned int idx = threadIdx.y * blockDim.x + threadIdx.x;

    tile[threadIdx.y][threadIdx.x] = idx;

    /*同步*/
    __syncthreads();

    out[idx] = tile[threadIdx.y][threadIdx.x];
}

__global__ void setColReadCol(int *out)
{
    /*静态共享内存*/
    __shared__ int tile[BDIMX][BDIMY];

    unsigned int idx = threadIdx.y * blockDim.x + threadIdx.x;

    tile[threadIdx.x][threadIdx.y] = idx;

    /*同步*/
    __syncthreads();

    out[idx] = tile[threadIdx.x][threadIdx.y];
}

__global__ void setRowReadCol(int *out)
{
    /*静态共享内存*/
    __shared__ int tile[BDIMY][BDIMX];

    unsigned int idx = threadIdx.y * blockDim.x + threadIdx.x;

    unsigned int irow = idx / blockDim.y;
    unsigned int icol = idx % blockDim.y;

    tile[threadIdx.y][threadIdx.x] = idx;

    /*同步*/
    __syncthreads();

    out[idx] = tile[icol][irow];
}

__global__ void setRowReadColDyn(int *out)
{
    /*动态共享内存*/
    extern __shared__ int tile[];
    
    unsigned int idx = threadIdx.y * blockDim.x + threadIdx.x;

    unsigned int irow = idx / blockDim.y;
    unsigned int icol = idx % blockDim.y;

    unsigned int col_idx = icol * blockDim.x + irow;

    tile[idx] = idx;

    /*同步*/
    __syncthreads();

    out[idx] = tile[col_idx];
}

__global__ void setRowReadColPad(int *out)
{
    /*静态共享内存*/
    __shared__ int tile[BDIMY][BDIMX + IPAD];

    unsigned int idx = threadIdx.y * blockDim.x + threadIdx.x;

    unsigned int irow = idx / blockDim.y;
    unsigned int icol = idx % blockDim.y;

    tile[threadIdx.y][threadIdx.x] = idx;

    /*同步*/
    __syncthreads();

    out[idx] = tile[icol][irow];
}

__global__ void setRowReadColDynPad(int *out)
{
    /*动态共享内存*/
    extern __shared__ int tile[];
    
    unsigned int g_idx = threadIdx.y * blockDim.x + threadIdx.x;

    unsigned int irow = g_idx / blockDim.y;
    unsigned int icol = g_idx % blockDim.y;

    unsigned int row_idx = threadIdx.y * (blockDim.x + IPAD) + threadIdx.x;
    unsigned int col_idx = icol * (blockDim.x + IPAD) + irow;

    tile[row_idx] = g_idx;

    /*同步*/
    __syncthreads();

    out[g_idx] = tile[col_idx];
}


int main(int argc, char *argv[])
{
    hipDeviceProp_t props;
    int deviceID = 0;
    hipGetDeviceProperties(&props, deviceID);
    printf("%s at ", argv[0]);
    printf("device %d: %s ", deviceID, props.name);
    hipSetDevice(deviceID);

    hipSharedMemConfig pConfig;
    hipDeviceGetSharedMemConfig(&pConfig);
    printf("with Bank Mode:%s ", pConfig == 1 ? "4-Byte" : "8-byte");

    int nx = BDIMX;
    int ny = BDIMY;

    bool iprintf(0);

    if(argc > 1) iprintf = atoi(argv[1]);
    
    size_t nBytes = nx * ny * sizeof(int);

    dim3 block(BDIMX, BDIMY);
    dim3 grid(nx / BDIMX, ny/BDIMY);
    printf("<<< grid (%d,%d) block (%d, %d)>>>\n", grid.x, grid.y, block.x, block.y);
    
    int *d_C;
    hipMalloc((int **)&d_C,nBytes);
    int *gpuRef = (int *)malloc(nBytes);

    hipLaunchKernelGGL(setRowReadRow, grid, block, 0, 0, d_C);
    hipLaunchKernelGGL(setColReadCol, grid, block, 0, 0, d_C);

    my_timer timer1;
    hipMemset(d_C, 0, nBytes);
    timer1.start();
    hipLaunchKernelGGL(setRowReadRow, grid, block, 0, 0, d_C);
    hipDeviceSynchronize();
    timer1.stop();
    hipMemcpy(gpuRef, d_C, nBytes, hipMemcpyDeviceToHost);

    printData((char*)"set row read row        ", gpuRef, nx * ny);
    printf("\t cost time : %0.5f ms\n", timer1.time_use/1000);

    my_timer timer2;
    hipMemset(d_C, 0, nBytes);
    timer2.start();
    hipLaunchKernelGGL(setColReadCol, grid, block, 0, 0, d_C);
    hipDeviceSynchronize();
    timer2.stop();
    hipMemcpy(gpuRef, d_C, nBytes, hipMemcpyDeviceToHost);

    printData((char*)"set col read col        ", gpuRef, nx * ny);
    printf("\t cost time : %0.5f ms\n", timer2.time_use/1000);
    
    my_timer timer6;
    hipMemset(d_C, 0, nBytes);
    timer6.start();
    hipLaunchKernelGGL(setRowReadCol, grid, block, 0, 0, d_C);
    hipDeviceSynchronize();
    timer6.stop();
    hipMemcpy(gpuRef, d_C, nBytes, hipMemcpyDeviceToHost);

    printData((char*)"set row read col        ", gpuRef, nx * ny);
    printf("\t cost time : %0.5f ms\n", timer6.time_use/1000);

    my_timer timer3;
    hipMemset(d_C, 0, nBytes);
    timer3.start();
    hipLaunchKernelGGL(setRowReadColDyn, grid, block, BDIMX*BDIMY*sizeof(int), 0, d_C);
    hipDeviceSynchronize();
    timer3.stop();
    hipMemcpy(gpuRef, d_C, nBytes, hipMemcpyDeviceToHost);

    printData((char*)"set row read col dyn     ", gpuRef, nx * ny);
    printf("\t cost time : %0.5f ms\n", timer3.time_use/1000);

    my_timer timer4;
    hipMemset(d_C, 0, nBytes);
    timer4.start();
    hipLaunchKernelGGL(setRowReadColPad, grid, block, 0, 0, d_C);
    hipDeviceSynchronize();
    timer4.stop();
    hipMemcpy(gpuRef, d_C, nBytes, hipMemcpyDeviceToHost);
    
    printData((char*)"set row read col pad     ", gpuRef, nx * ny);
    printf("\t cost time : %0.5f ms\n", timer4.time_use/1000);

    my_timer timer5;
    hipMemset(d_C, 0, nBytes);
    timer5.start();
    hipLaunchKernelGGL(setRowReadColDynPad, grid, block, (BDIMX+IPAD)*BDIMY*sizeof(int), 0, d_C);
    hipDeviceSynchronize();
    timer5.stop();
    hipMemcpy(gpuRef, d_C, nBytes, hipMemcpyDeviceToHost);

    printData((char*)"set row read col dyn pad ", gpuRef, nx * ny);
    printf("\t cost time : %0.5f ms\n", timer5.time_use/1000);

    hipFree(d_C);
    free(gpuRef);

    /*重置设备*/
    hipDeviceReset();
    
    return 0;
}

三、编译运行

HIP程序采用hipcc编译。

运行结果:

相关推荐
阿群今天学习了吗24 分钟前
label studio 服务器端打开+xshell端口转发设置
linux·运维·服务器·笔记·python
Aczone2827 分钟前
Linux Framebuffer(帧缓冲)与基本 UI 绘制技术
linux·运维·ui
现在,此刻8 小时前
leetcode 11. 盛最多水的容器 -java
java·算法·leetcode
☆璇9 小时前
【C++】哈希的应用:位图和布隆过滤器
算法·哈希算法
wdfk_prog10 小时前
[Linux]学习笔记系列 -- [arm][lib]
linux·运维·arm开发·笔记·学习
boy快快长大10 小时前
【Linux】常用命令(三)
linux·运维·服务器
请提交用户昵称10 小时前
Spark运行架构
大数据·架构·spark
一株月见草哇10 小时前
Matlab(4)
人工智能·算法·matlab
core51210 小时前
基于elk实现分布式日志
分布式·elk·日志·logstash
hans汉斯11 小时前
基于深度学习的苹果品质智能检测算法研究
人工智能·深度学习·算法