机器学习基础-支持向量机SVM

目录

基本概念和定义

[1. 超平面(Hyperplane)](#1. 超平面(Hyperplane))

[2. 支持向量(Support Vectors)](#2. 支持向量(Support Vectors))

[3. 线性可分](#3. 线性可分)

[4. 边界](#4. 边界)

SVM算法基本思想和分类

基本思想

间隔最大化

间隔(Margin)

[软边距 SVM](#软边距 SVM)

核函数的概念


基本概念和定义

  • SVM是一个有监督的机器学习模型
  • 用于分类任务回归任务
    • 支持线性和非线性分类(SVC),下面以SVC展开
    • 支持线性和非线性回归(SVR)

1. 超平面(Hyperplane)

  • 作用:SVM 寻找的是能够最好地将不同类别分开的那个超平面。

2. 支持向量(Support Vectors)

  • 定义分类中距离超平面最近的数据点

3. 线性可分

4. 边界


SVM算法基本思想和分类

基本思想

找到可以分隔不同类数据集的超平面(决策面),使得支持向量(特殊的点)距离该平面的距离最大


间隔最大化

指的是寻找一个能够将不同类别的数据点分开的超平面,并且这个超平面到最近的数据点(即支持向量)的距离最大。

间隔(Margin)

  • 定义 :间隔是指两个类别之间距离的最大间隔。具体来说,它是从超平面到最近的支持向量的距离的两倍。

软边距 SVM

在实际应用中,数据往往不是完全线性可分的,或者可能存在噪声。为了应对这种情况,引入了软边距 SVM,允许一些样本位于边距内或错误分类。


核函数的概念

非线性可分的数据转换为线性可分的数据特征转换函数

理解

相关推荐
Mintopia34 分钟前
开源AIGC模型对Web技术生态的影响与机遇 🌐✨
人工智能·aigc·敏捷开发
codetown35 分钟前
openai-go通过SOCKS5代理调用外网大模型
人工智能·后端
世优科技虚拟人1 小时前
2026数字展厅设计核心关键,AI数字人交互大屏加速智慧展厅升级改造
人工智能·大模型·数字人·智慧展厅·展厅设计
m0_372257021 小时前
ID3 算法为什么可以用来优化决策树
算法·决策树·机器学习
艾莉丝努力练剑1 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
MobotStone1 小时前
数字沟通之道
人工智能·算法
Together_CZ1 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
caiyueloveclamp2 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
Aileen_0v02 小时前
【Gemini3.0的国内use教程】
android·人工智能·算法·开源·mariadb
xiaogutou11213 小时前
5款软件,让歌唱比赛海报设计更简单
人工智能