流程图(四)利用python绘制漏斗图

流程图(四)利用python绘制漏斗图

漏斗图(Funnel Chart)简介

漏斗图经常用于展示生产经营各环节的关键数值变化,以较高的头部开始,较低的底部结束,可视化呈现各环节的转化效率与变动大小。一般重点关注落差较大的环节。

快速绘制

  1. 基于plotly

    python 复制代码
    # 基本漏斗图
    from plotly import graph_objects as go
    
    fig = go.Figure(go.Funnel(
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"],
        x = [39, 27.4, 20.6, 11, 2]))
    
    fig.show()
    python 复制代码
    # 分类漏斗图
    from plotly import graph_objects as go
    
    fig = go.Figure()
    
    fig.add_trace(go.Funnel(
        name = 'Montreal',
        y = ["Website visit", "Downloads", "Potential customers", "Requested price"],
        x = [120, 60, 30, 20],
        textinfo = "value+percent initial"))
    
    fig.add_trace(go.Funnel(
        name = 'Toronto',
        orientation = "h",
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"],
        x = [100, 60, 40, 30, 20],
        textposition = "inside",
        textinfo = "value+percent previous"))
    
    fig.add_trace(go.Funnel(
        name = 'Vancouver',
        orientation = "h",
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent", "Finalized"],
        x = [90, 70, 50, 30, 10, 5],
        textposition = "outside",
        textinfo = "value+percent total"))
    
    fig.show()
  2. 基于pyecharts

    python 复制代码
    from pyecharts import options as opts
    from pyecharts.charts import Funnel
    
    # 自定义数据
    x = [39, 27.4, 20.6, 11, 2]
    y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"]
    
    c = (
        Funnel()
        .add("商品", [list(z) for z in zip(y, x)])
        .set_global_opts(title_opts=opts.TitleOpts(title="基本漏斗图"))
    )
    
    c.render_notebook()

    总结

    以上通过plotly、pyecharts快速绘漏斗图。

    共勉~

相关推荐
Rockson25 分钟前
使用Ruby接入实时行情API教程
javascript·python
Tipriest_1 小时前
Python关键字梳理
python·关键字·keyword
im_AMBER3 小时前
学习日志05 python
python·学习
大虫小呓3 小时前
Python 处理 Excel 数据 pandas 和 openpyxl 哪家强?
python·pandas
哪 吒3 小时前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
摸爬滚打李上进4 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
凛铄linshuo5 小时前
爬虫简单实操2——以贴吧为例爬取“某吧”前10页的网页代码
爬虫·python·学习
牛客企业服务5 小时前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
胡斌附体6 小时前
linux测试端口是否可被外部访问
linux·运维·服务器·python·测试·端口测试·临时服务器
likeGhee6 小时前
python缓存装饰器实现方案
开发语言·python·缓存