流程图(四)利用python绘制漏斗图

流程图(四)利用python绘制漏斗图

漏斗图(Funnel Chart)简介

漏斗图经常用于展示生产经营各环节的关键数值变化,以较高的头部开始,较低的底部结束,可视化呈现各环节的转化效率与变动大小。一般重点关注落差较大的环节。

快速绘制

  1. 基于plotly

    python 复制代码
    # 基本漏斗图
    from plotly import graph_objects as go
    
    fig = go.Figure(go.Funnel(
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"],
        x = [39, 27.4, 20.6, 11, 2]))
    
    fig.show()
    python 复制代码
    # 分类漏斗图
    from plotly import graph_objects as go
    
    fig = go.Figure()
    
    fig.add_trace(go.Funnel(
        name = 'Montreal',
        y = ["Website visit", "Downloads", "Potential customers", "Requested price"],
        x = [120, 60, 30, 20],
        textinfo = "value+percent initial"))
    
    fig.add_trace(go.Funnel(
        name = 'Toronto',
        orientation = "h",
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"],
        x = [100, 60, 40, 30, 20],
        textposition = "inside",
        textinfo = "value+percent previous"))
    
    fig.add_trace(go.Funnel(
        name = 'Vancouver',
        orientation = "h",
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent", "Finalized"],
        x = [90, 70, 50, 30, 10, 5],
        textposition = "outside",
        textinfo = "value+percent total"))
    
    fig.show()
  2. 基于pyecharts

    python 复制代码
    from pyecharts import options as opts
    from pyecharts.charts import Funnel
    
    # 自定义数据
    x = [39, 27.4, 20.6, 11, 2]
    y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"]
    
    c = (
        Funnel()
        .add("商品", [list(z) for z in zip(y, x)])
        .set_global_opts(title_opts=opts.TitleOpts(title="基本漏斗图"))
    )
    
    c.render_notebook()

    总结

    以上通过plotly、pyecharts快速绘漏斗图。

    共勉~

相关推荐
XiaoMu_00126 分钟前
基于Django+Vue3+YOLO的智能气象检测系统
python·yolo·django
honder试试1 小时前
焊接自动化测试平台图像处理分析-模型训练推理
开发语言·python
心本无晴.2 小时前
Python进程,线程
python·进程
java1234_小锋4 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 主成分分析 (PCA)
python·机器学习·scikit-learn
java1234_小锋4 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 线性判别分析 (LDA)
python·机器学习·scikit-learn
思辨共悟5 小时前
Python的价值:突出在数据分析与挖掘
python·数据分析
计算机毕业设计木哥6 小时前
计算机毕设选题:基于Python+Django的B站数据分析系统的设计与实现【源码+文档+调试】
java·开发语言·后端·python·spark·django·课程设计
中等生6 小时前
Pandas 与 NumPy:数据分析中的黄金搭档
后端·python
用户8356290780516 小时前
Python查找替换PDF文字:告别手动,拥抱自动化
后端·python
星哥说事7 小时前
Python自学12 — 函数和模块
开发语言·python