流程图(四)利用python绘制漏斗图

流程图(四)利用python绘制漏斗图

漏斗图(Funnel Chart)简介

漏斗图经常用于展示生产经营各环节的关键数值变化,以较高的头部开始,较低的底部结束,可视化呈现各环节的转化效率与变动大小。一般重点关注落差较大的环节。

快速绘制

  1. 基于plotly

    python 复制代码
    # 基本漏斗图
    from plotly import graph_objects as go
    
    fig = go.Figure(go.Funnel(
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"],
        x = [39, 27.4, 20.6, 11, 2]))
    
    fig.show()
    python 复制代码
    # 分类漏斗图
    from plotly import graph_objects as go
    
    fig = go.Figure()
    
    fig.add_trace(go.Funnel(
        name = 'Montreal',
        y = ["Website visit", "Downloads", "Potential customers", "Requested price"],
        x = [120, 60, 30, 20],
        textinfo = "value+percent initial"))
    
    fig.add_trace(go.Funnel(
        name = 'Toronto',
        orientation = "h",
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"],
        x = [100, 60, 40, 30, 20],
        textposition = "inside",
        textinfo = "value+percent previous"))
    
    fig.add_trace(go.Funnel(
        name = 'Vancouver',
        orientation = "h",
        y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent", "Finalized"],
        x = [90, 70, 50, 30, 10, 5],
        textposition = "outside",
        textinfo = "value+percent total"))
    
    fig.show()
  2. 基于pyecharts

    python 复制代码
    from pyecharts import options as opts
    from pyecharts.charts import Funnel
    
    # 自定义数据
    x = [39, 27.4, 20.6, 11, 2]
    y = ["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"]
    
    c = (
        Funnel()
        .add("商品", [list(z) for z in zip(y, x)])
        .set_global_opts(title_opts=opts.TitleOpts(title="基本漏斗图"))
    )
    
    c.render_notebook()

    总结

    以上通过plotly、pyecharts快速绘漏斗图。

    共勉~

相关推荐
爱笑的眼睛111 小时前
超越可视化:降维算法组件的深度解析与工程实践
java·人工智能·python·ai
清铎1 小时前
leetcode_day12_滑动窗口_《绝境求生》
python·算法·leetcode·动态规划
ai_top_trends1 小时前
2026 年工作计划 PPT 横评:AI 自动生成的优劣分析
人工智能·python·powerpoint
TDengine (老段)2 小时前
TDengine Python 连接器进阶指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
brent4232 小时前
DAY50复习日
开发语言·python
万行2 小时前
机器学习&第三章
人工智能·python·机器学习·数学建模·概率论
Data_agent2 小时前
Cocbuy 模式淘宝 / 1688 代购系统(欧美市场)搭建指南
开发语言·python
m0_726365832 小时前
哈希分分预测系统 打造自适应趋势分析「Python+DeepSeek+PyQt5」
python·qt·哈希算法
vyuvyucd3 小时前
Qwen-1.8B-Chat昇腾Atlas800TA2部署实战
python
轻竹办公PPT3 小时前
2026 年工作计划 PPT 内容拆解,对比不同 AI 生成思路
人工智能·python·powerpoint