OpenCV 4.5至4.10版本更新概述

OpenCV 4.5至4.10版本更新概述

OpenCV 从 4.5 到 4.10 版本的更迭中,每个版本都引入了新功能、优化和修复。以下是主要版本的更新内容概述:

OpenCV 4.5.x 系列

  • 4.5.0 (2020年10月)

    • 新增对 YOLOv4 的支持。
    • 引入 DNN 模块的改进,包括对 ONNX 和 TensorFlow 的更好支持。
    • 增加了对 OpenVINO 2021.x 的支持。
    • 改进了 CUDA 加速功能。
    • 新增了 QR 码检测和解码功能。
  • 4.5.1 (2020年12月)

    • 修复了 4.5.0 中的一些 bug。
    • 改进了 DNN 模块的性能和稳定性。
  • 4.5.2 (2021年1月)

    • 进一步修复了 DNN 模块中的问题。
    • 改进了对 ARM 平台的支持。

OpenCV 4.6.x 系列

  • 4.6.0 (2022年1月)

    • 新增了对 OpenVINO 2022.1 的支持。
    • 改进了 DNN 模块对 ONNX 和 TensorFlow 的支持。
    • 增加了对更多深度学习模型的支持。
    • 改进了 CUDA 加速功能。
  • 4.6.1 (2022年3月)

    • 修复了 4.6.0 中的一些 bug。
    • 改进了 DNN 模块的性能和稳定性。

OpenCV 4.7.x 系列

  • 4.7.0 (2022年10月)

    • 新增了对 OpenVINO 2022.2 的支持。
    • 改进了 DNN 模块对 ONNX 和 TensorFlow 的支持。
    • 增加了对更多深度学习模型的支持。
    • 改进了 CUDA 加速功能。
  • 4.7.1 (2022年12月)

    • 修复了 4.7.0 中的一些 bug。
    • 改进了 DNN 模块的性能和稳定性。

OpenCV 4.8.x 系列

  • 4.8.0 (2023年4月)

    • 新增了对 OpenVINO 2023.0 的支持。
    • 改进了 DNN 模块对 ONNX 和 TensorFlow 的支持。
    • 增加了对更多深度学习模型的支持。
    • 改进了 CUDA 加速功能。
  • 4.8.1 (2023年6月)

    • 修复了 4.8.0 中的一些 bug。
    • 改进了 DNN 模块的性能和稳定性。

OpenCV 4.9.x 系列

  • 4.9.0 (2023年10月)

    • 新增了对 OpenVINO 2023.1 的支持。
    • 改进了 DNN 模块对 ONNX 和 TensorFlow 的支持。
    • 增加了对更多深度学习模型的支持。
    • 改进了 CUDA 加速功能。
  • 4.9.1 (2023年12月)

    • 修复了 4.9.0 中的一些 bug。
    • 改进了 DNN 模块的性能和稳定性。

OpenCV 4.10.x 系列

  • 4.10.0 (2024年4月)

    • 新增了对 OpenVINO 2024.0 的支持。
    • 改进了 DNN 模块对 ONNX 和 TensorFlow 的支持。
    • 增加了对更多深度学习模型的支持。
    • 改进了 CUDA 加速功能。
  • 4.10.1 (2024年6月)

    • 修复了 4.10.0 中的一些 bug。
    • 改进了 DNN 模块的性能和稳定性。

以下是 OpenCV 从 4.5 到 4.10 版本的主要更新内容,以表格形式展示:

版本号 发布日期 主要更新内容
4.5.0 2020年10月 - 新增 YOLOv4 支持 - 改进 DNN 模块(ONNX、TensorFlow) - 支持 OpenVINO 2021.x - 新增 QR 码检测与解码功能
4.5.1 2020年12月 - 修复 4.5.0 中的 bug - 改进 DNN 模块性能与稳定性
4.5.2 2021年1月 - 修复 DNN 模块问题 - 改进 ARM 平台支持
4.6.0 2022年1月 - 支持 OpenVINO 2022.1 - 改进 DNN 模块(ONNX、TensorFlow) - 增强 CUDA 加速功能
4.6.1 2022年3月 - 修复 4.6.0 中的 bug - 改进 DNN 模块性能与稳定性
4.7.0 2022年10月 - 支持 OpenVINO 2022.2 - 改进 DNN 模块(ONNX、TensorFlow) - 增强 CUDA 加速功能
4.7.1 2022年12月 - 修复 4.7.0 中的 bug - 改进 DNN 模块性能与稳定性
4.8.0 2023年4月 - 支持 OpenVINO 2023.0 - 改进 DNN 模块(ONNX、TensorFlow) - 增强 CUDA 加速功能
4.8.1 2023年6月 - 修复 4.8.0 中的 bug - 改进 DNN 模块性能与稳定性
4.9.0 2023年10月 - 支持 OpenVINO 2023.1 - 改进 DNN 模块(ONNX、TensorFlow) - 增强 CUDA 加速功能
4.9.1 2023年12月 - 修复 4.9.0 中的 bug - 改进 DNN 模块性能与稳定性
4.10.0 2024年4月 - 支持 OpenVINO 2024.0 - 改进 DNN 模块(ONNX、TensorFlow) - 增强 CUDA 加速功能
4.10.1 2024年6月 - 修复 4.10.0 中的 bug - 改进 DNN 模块性能与稳定性

总结

从 OpenCV 4.5 到 4.10,每个版本都在不断改进 DNN 模块、CUDA 加速和对 OpenVINO 的支持。同时,修复了许多 bug,提升了性能和稳定性。建议根据项目需求选择合适的版本。

  • DNN 模块:每个版本都在改进对 ONNX、TensorFlow 的支持,并增加对新模型的支持。
  • OpenVINO:从 4.5.0 开始,逐步支持 OpenVINO 2021.x 到 2024.0。
  • CUDA 加速:持续优化 CUDA 加速功能,提升性能。
  • Bug 修复:每个小版本(如 4.5.1、4.6.1 等)主要修复前一个版本的 bug 并提升稳定性。
相关推荐
ljd2103231243 分钟前
opencv函数展示2
人工智能·opencv·计算机视觉
不是AI2 小时前
【Java编程】【计算机视觉】一种简单的图片加/解密算法
java·算法·计算机视觉
一直走下去-明2 小时前
使用python帮助艺术家完成角色动画和服装模型等任务
开发语言·图像处理·pytorch·python·opencv·ai作画
Tech Synapse5 小时前
基于OpenCV与PyTorch的智能相册分类器全栈实现教程
人工智能·pytorch·opencv
秣厉科技6 小时前
【秣厉科技】LabVIEW工具包——OpenCV 教程(20):拾遗 - imgproc 基础操作(下)
科技·opencv·labview
白熊1886 小时前
【计算机视觉】OpenCV实战项目-AdvancedLaneDetection 车道检测
人工智能·opencv·计算机视觉
沙子可可9 小时前
深入学习OpenCV:第一章简介
人工智能·opencv·学习
AI技术控9 小时前
计算机视觉算法实战——基于YOLOv8的农田智能虫情测报灯害虫种类识别系统开发指南
人工智能·深度学习·算法·yolo·计算机视觉
odoo中国9 小时前
Python 深度学习 第8章 计算机视觉中的深度学习 - 卷积神经网络使用实例
python·深度学习·计算机视觉·卷积神经网络
硅谷秋水9 小时前
MAPLE:编码从自我为中心的视频中学习的灵巧机器人操作先验
人工智能·机器学习·计算机视觉·机器人·音视频