NCCL学习笔记-概念全解

是什么(What)

高性能通信库,专为多GPU通信优化。加速分布式深度学习训练的集合通信
集合通信

点对点通信

为什么(Why)

通用通信库在GPU通信中性能不足,无法充分利用GPU高带宽和低延迟。

所以需要一个针对GPU架构优化,支持NVLink,NVSwitch的高速互联。

主要还是需要低延迟高带宽

怎么样(How)

怎么通信?其实和MPI差不多。

NCCL中:

进程叫做rank每个rank都有一个rank ID
rank的集合构成了一个"communicator"

也就是一些可以互相通信的进程。

一个rank可以分属于多个communicators

而且在不同的地方可能有不同的rank ID

然后呢?
ncclCommInitRank():初始化指定rank的communicator。
ncclCommInitAll():同时初始化所有rank的communicator。
initTransportsRank():检测可用GPU设备以及拓扑结构,计算最佳通信路径,建立连接。
ncclTopoFillGpu():建立包含GPU的XML树结构,可以设置环境变量NCCL_TOPO_DUMP_FILE来书输出XML文件,并通过该XML文件来查看机器的拓扑结构。

然后两种算法?
Ring算法:基本算法,环形、只能和相邻两个邻居进行数据交换。
特点:简洁;对等
缺点:如果是Ring的all-reduce,延迟比较高

Tree算法:因为二叉树大约一半节点都是叶子节点,那么通过将叶子节点变换为非叶子节点,得到两棵二叉树,每个节点在其中好一棵二叉树是叶子节点,另一棵二叉树是非叶子节点。
特点:延迟更低,高效利用带宽和拓扑结构

单机多卡:NVLink 和 NVSwitch
多机多卡:nfiniBand 或 RoCE

谁(Who)

开发者

何时(When)

初始版本:NCCL 1.0 于 2016 年发布,支持单机多卡通信。

NCCL 2.0:支持多机多卡通信,引入跨节点通信功能。

NCCL 2.6:引入 SHArP 算法,优化 InfiniBand 网络下的通信性能。

何地(Where)

数据中心

GPU 集群中的分布式训练和并行计算。
云计算平台

AWS、Google Cloud、Azure 等云服务提供商的 GPU 实例。
边缘计算

高性能边缘计算设备中的实时数据处理。
NCCL 的硬件环境

GPU:支持 NVLink 和 NVSwitch 的 NVIDIA GPU(如 A100、V100)。

网络:支持 InfiniBand 或 RoCE 的高速网络。

如何解决(How to Solve)

性能优化

自动化选择最优

Ring all reduce

SHArP 算法

分析问题

NCCL 的日志和性能分析工具诊断通信性能瓶颈。

如何解决死锁、数据不一致等通信错误。

结果与影响(Outcome & Impact)

待定,待笔者实际操作。

相关推荐
ghost1431 小时前
C#学习第22天:网络编程
开发语言·学习·c#
ALINX技术博客1 小时前
【ALINX 实战笔记】FPGA 大神 Adam Taylor 使用 ChipScope 调试 AMD Versal 设计
笔记·fpga开发
关山煮酒1 小时前
【数据挖掘笔记】兴趣度度量Interest of an association rule
笔记·数据挖掘
每次的天空2 小时前
Android学习总结之kotlin篇(二)
android·学习·kotlin
LuckyLay2 小时前
Vue百日学习计划Day4-8——Gemini版
前端·vue.js·学习
机器视觉知识推荐、就业指导2 小时前
Qt/C++面试【速通笔记九】—视图框架机制
c++·笔记·qt
s_little_monster2 小时前
【Linux】socket网络编程基础
linux·运维·网络·笔记·学习·php·学习方法
猴子请来的逗比4892 小时前
nginx负载均衡及keepalive高可用
运维·学习·nginx·负载均衡
汇能感知2 小时前
光谱相机的图像预处理技术
经验分享·笔记·科技
小蜗笔记3 小时前
path环境变量满了如何处理,分割 PATH 到 Path1 和 Path2
笔记