【数据挖掘笔记】兴趣度度量Interest of an association rule

在数据挖掘中,关联规则挖掘是一个重要的任务。兴趣度度量是评估关联规则的重要指标,以下是三个常用的兴趣度度量:支持度、置信度和提升度。

支持度(Support)

计算方法

支持度表示包含项集的事务占总事务的比例,用于衡量项集的普遍性。其计算公式为:

对于关联规则 X→Y,其支持度计算公式为

含义及理解

支持度反映了项集或关联规则在整个数据集中的出现频率,用于衡量实用性,简单来说就是出现的越频繁,说明越实用。就好比明星粉丝越多,说明他在群众中收到的支持就越大,有一天他逃难收到的帮助可能性就越大。

置信度(Confidence)

计算方法

置信度表示在包含前项 X 的事务中,同时包含后项 Y 的比例,用于衡量关联规则的可靠性。其计算公式为:

含义及理解

置信度反映了关联规则的可信程度。本质上是条件概率,满足条件下得到结果的可靠性。

提升度(Lift)

计算方法

提升度表示关联规则中前项和后项之间的关联强度,用于衡量关联规则的关联性。其计算公式为:

含义及理解

提升度反映了关联规则中前项和后项之间的关联程度。但是很显然这太抽象了,有没有更通俗易懂的理解呢主包?有的!比如你买茶和咖啡,买茶后买咖啡的概率是0.75,但是单独买咖啡的概率是0.9,提升度就小于1,因为大家本来就爱买咖啡,但是买茶之后买咖啡的人数比例还减少了,说明喝茶的人中有一部分人发现了喝咖啡不健康,所以那部分人少了,所以买茶人群中的买咖啡比例才会从0.9减少到了0.75。

  • 如果提升度大于1,说明前项和后项之间存在正关联,即前项的出现会增加后项出现的可能性;
  • 如果提升度小于1,说明前项和后项之间存在负关联,即前项的出现会降低后项出现的可能性;
  • 如果提升度等于1,说明前项和后项之间相互独立,没有关联。
相关推荐
天水幼麟2 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
天水幼麟4 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
绿皮的猪猪侠5 小时前
算法笔记上机训练实战指南刷题
笔记·算法·pta·上机·浙大
沧海一笑-dj5 小时前
【51单片机】51单片机学习笔记-课程简介
笔记·学习·51单片机·江科大·江科大学习笔记·江科大单片机·江科大51单片机
老虎06275 小时前
JavaWeb(苍穹外卖)--学习笔记04(前端:HTML,CSS,JavaScript)
前端·javascript·css·笔记·学习·html
大苏打seven6 小时前
Docker学习笔记:Docker网络
笔记·学习·docker
用户Taobaoapi201410 小时前
母婴用品社媒种草效果量化:淘宝详情API+私域转化追踪案例
大数据·数据挖掘·数据分析
kikikidult10 小时前
(2025.07)解决——ubuntu20.04系统开机黑屏,左上角光标闪烁
笔记·ubuntu
用户Taobaoapi201410 小时前
Taobao agent USA丨美国淘宝代购1688代采集运系统搭建指南
数据挖掘·php
近津薪荼10 小时前
初学者关于数据在内存中的储存的笔记
笔记