【数据挖掘笔记】兴趣度度量Interest of an association rule

在数据挖掘中,关联规则挖掘是一个重要的任务。兴趣度度量是评估关联规则的重要指标,以下是三个常用的兴趣度度量:支持度、置信度和提升度。

支持度(Support)

计算方法

支持度表示包含项集的事务占总事务的比例,用于衡量项集的普遍性。其计算公式为:

对于关联规则 X→Y,其支持度计算公式为

含义及理解

支持度反映了项集或关联规则在整个数据集中的出现频率,用于衡量实用性,简单来说就是出现的越频繁,说明越实用。就好比明星粉丝越多,说明他在群众中收到的支持就越大,有一天他逃难收到的帮助可能性就越大。

置信度(Confidence)

计算方法

置信度表示在包含前项 X 的事务中,同时包含后项 Y 的比例,用于衡量关联规则的可靠性。其计算公式为:

含义及理解

置信度反映了关联规则的可信程度。本质上是条件概率,满足条件下得到结果的可靠性。

提升度(Lift)

计算方法

提升度表示关联规则中前项和后项之间的关联强度,用于衡量关联规则的关联性。其计算公式为:

含义及理解

提升度反映了关联规则中前项和后项之间的关联程度。但是很显然这太抽象了,有没有更通俗易懂的理解呢主包?有的!比如你买茶和咖啡,买茶后买咖啡的概率是0.75,但是单独买咖啡的概率是0.9,提升度就小于1,因为大家本来就爱买咖啡,但是买茶之后买咖啡的人数比例还减少了,说明喝茶的人中有一部分人发现了喝咖啡不健康,所以那部分人少了,所以买茶人群中的买咖啡比例才会从0.9减少到了0.75。

  • 如果提升度大于1,说明前项和后项之间存在正关联,即前项的出现会增加后项出现的可能性;
  • 如果提升度小于1,说明前项和后项之间存在负关联,即前项的出现会降低后项出现的可能性;
  • 如果提升度等于1,说明前项和后项之间相互独立,没有关联。
相关推荐
暗光之痕23 分钟前
Unreal5研究笔记 Actor的生命周期函数
笔记·unreal engine
Gain_chance32 分钟前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
宵时待雨1 小时前
STM32笔记归纳9:定时器
笔记·stm32·单片机·嵌入式硬件
m0_719084112 小时前
React笔记张天禹
前端·笔记·react.js
r i c k4 小时前
数据库系统学习笔记
数据库·笔记·学习
shandianchengzi5 小时前
【小白向】错位排列|图文解释公考常见题目错位排列的递推式Dn=(n-1)(Dn-2+Dn-1)推导方式
笔记·算法·公考·递推·排列·考公
浅念-5 小时前
C语言编译与链接全流程:从源码到可执行程序的幕后之旅
c语言·开发语言·数据结构·经验分享·笔记·学习·算法
The森6 小时前
Linux IO 模型纵深解析 01:从 Unix 传统到 Linux 内核的 IO 第一性原理
linux·服务器·c语言·经验分享·笔记·unix
tq10866 小时前
Skills 的问题与解决方案
笔记
三水不滴6 小时前
有 HTTP 了为什么还要有 RPC?
经验分享·笔记·网络协议·计算机网络·http·rpc