【数据挖掘笔记】兴趣度度量Interest of an association rule

在数据挖掘中,关联规则挖掘是一个重要的任务。兴趣度度量是评估关联规则的重要指标,以下是三个常用的兴趣度度量:支持度、置信度和提升度。

支持度(Support)

计算方法

支持度表示包含项集的事务占总事务的比例,用于衡量项集的普遍性。其计算公式为:

对于关联规则 X→Y,其支持度计算公式为

含义及理解

支持度反映了项集或关联规则在整个数据集中的出现频率,用于衡量实用性,简单来说就是出现的越频繁,说明越实用。就好比明星粉丝越多,说明他在群众中收到的支持就越大,有一天他逃难收到的帮助可能性就越大。

置信度(Confidence)

计算方法

置信度表示在包含前项 X 的事务中,同时包含后项 Y 的比例,用于衡量关联规则的可靠性。其计算公式为:

含义及理解

置信度反映了关联规则的可信程度。本质上是条件概率,满足条件下得到结果的可靠性。

提升度(Lift)

计算方法

提升度表示关联规则中前项和后项之间的关联强度,用于衡量关联规则的关联性。其计算公式为:

含义及理解

提升度反映了关联规则中前项和后项之间的关联程度。但是很显然这太抽象了,有没有更通俗易懂的理解呢主包?有的!比如你买茶和咖啡,买茶后买咖啡的概率是0.75,但是单独买咖啡的概率是0.9,提升度就小于1,因为大家本来就爱买咖啡,但是买茶之后买咖啡的人数比例还减少了,说明喝茶的人中有一部分人发现了喝咖啡不健康,所以那部分人少了,所以买茶人群中的买咖啡比例才会从0.9减少到了0.75。

  • 如果提升度大于1,说明前项和后项之间存在正关联,即前项的出现会增加后项出现的可能性;
  • 如果提升度小于1,说明前项和后项之间存在负关联,即前项的出现会降低后项出现的可能性;
  • 如果提升度等于1,说明前项和后项之间相互独立,没有关联。
相关推荐
De-Alf3 小时前
Megatron-LM学习笔记(6)Megatron Model Attention注意力与MLA
笔记·学习·算法·ai
polarislove02144 小时前
9.2 自制延迟函数-嵌入式铁头山羊STM32笔记
笔记·stm32·嵌入式硬件
智嵌电子4 小时前
【笔记篇】【硬件基础篇】模拟电子技术基础 (童诗白) 第7章 波形的发生和信号的转换
笔记·嵌入式硬件
天呐草莓4 小时前
集成学习 (ensemble learning)
人工智能·python·深度学习·算法·机器学习·数据挖掘·集成学习
Gary Studio4 小时前
MPP充电学习笔记
笔记·学习
夏幻灵5 小时前
为什么要配置环境变量?
笔记·算法
week_泽5 小时前
1、OpenCV 特征检测入门笔记
人工智能·笔记·opencv
d111111111d5 小时前
STM32 电源管理模式全解析:低功耗场景该如何选型?
笔记·stm32·单片机·嵌入式硬件·学习
94621931zyn65 小时前
外观设置 - Cordova 与 OpenHarmony 混合开发实战
笔记·python
week_泽6 小时前
2、OpenCV Harris角点检测笔记
人工智能·笔记·opencv