文章目录
本章内容主要介绍如何在springboot项目对kafka进行整合,最终能达到的效果就是能够在项目中通过配置相关的kafka配置,就能进行消息的生产和消费。
1、pom.xml文件
原本项目用 Spring Boot 的版本为2.6.X,所以这里用spring-cloud-starter-stream-kafka的版本用的是2.2.1.RELEASE,也可以用其他版本,但是注意兼容性,不然会编译运行报错
xml
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>2021.0.2</version> <!-- 确保与 Spring Boot 2.6.x 兼容 -->
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-kafka</artifactId>
<version>2.2.1.RELEASE</version>
</dependency>
</dependencies>
2、application.yml
添加kafka的相关配置
yaml
spring:
kafka:
bootstrap-servers: 192.168.102.179:9092
producer:
acks: 1
retries: 0
batch-size: 30720000
buffer-memory: 33554432
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
#消费者配置
consumer:
group-id: test-kafka
#是否开启手动提交 默认自动提交
enable-auto-commit: true
#如果enable.auto.commit为true,则消费者偏移自动提交给Kafka的频率(以毫秒为单位),默认值为5000 自动提交已消费offset时间间隔
auto-commit-interval: 5000
#earliest:分区已经有提交的offset从提交的offset开始消费,如果没有提交的offset,从头开始消费,latest:分区下已有提交的offset从提交的offset开始消费,没有提交的offset从新产生的数据开始消费
auto-offset-reset: earliest
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
#一次调用 poll() 操作时返回的最大记录数 默认为 500 条
max-poll-records: 2
#kafka session timeout
session:
timeout:
ms: 300000
listener:
#kafka 没有创建指定的 topic 下 项目启动是否报错 true false
missing-topics-fatal: false
#Kafka 的消费模式 single 每次单条消费消息 batch 每次批量消费消息
type: single
ack-mode: manual_immediate
3、生产者配置类
添加一个生产者配置类KafkaProducerConfig ,主要设置消息的序列化方式等消息处理方式
java
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import java.util.HashMap;
import java.util.Map;
/**
* @Author 码至终章
* @Date 2025/1/8 11:33
* @Version 1.0
*/
@Configuration
@EnableKafka
public class KafkaProducerConfig {
@Value("${spring.kafka.bootstrap-servers}")
private String servers;
@Bean("myProducerKafkaProps")
public Map<String, Object> getMyKafkaProps() {
Map<String, Object> props = new HashMap<>(4);
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return props;
}
@Bean
public ProducerFactory<String, String> newProducerFactory() {
return new DefaultKafkaProducerFactory<>(getMyKafkaProps());
}
@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<>(newProducerFactory());
}
}
4、消费者配置类
创建一个消费者配置类KafkaConsumerConfig,主要设置一些消息的接收处理配置
java
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
import org.springframework.kafka.listener.ContainerProperties;
import java.util.HashMap;
import java.util.Map;
/**
* @Author 码至终章
* @Date 2025/1/8 12:09
* @Version 1.0
*/
@Configuration
@EnableKafka
public class KafkaConsumerConfig {
@Value("${spring.kafka.bootstrap-servers}")
private String servers;
@Value("${spring.kafka.consumer.group-id}")
private String groupId;
@Value("${spring.kafka.consumer.auto-offset-reset}")
private String offsetReset;
@Value("${spring.kafka.consumer.max-poll-records}")
private String maxPollRecords;
@Value("${spring.kafka.consumer.auto-commit-interval}")
private String autoCommitIntervalMs;
@Value("${spring.kafka.consumer.enable-auto-commit}")
private boolean enableAutoCommit;
@Bean("myConsumerKafkaProps")
public Map<String, Object> getMyKafkaProps() {
Map<String, Object> props = new HashMap<>(12);
//是否自动提交
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
//kafak 服务器
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
//不存在已经提交的offest时 earliest 表示从头开始消费,latest 表示从最新的数据消费
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, offsetReset);
//消费组id
props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
//一次调用poll()操作时返回的最大记录数,默认值为500
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, maxPollRecords);
//自动提交时间间隔 默认 5秒
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitIntervalMs);
//props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeoutMs);
return props;
}
/**
* 消费者工厂
*/
@Bean("myContainerFactory")
public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(new DefaultKafkaConsumerFactory<>(getMyKafkaProps()));
// 并发创建的消费者数量
factory.setConcurrency(3);
// 开启批处理
factory.setBatchListener(true);
//拉取超时时间
factory.getContainerProperties().setPollTimeout(1500);
//是否自动提交 ACK kafka 默认是自动提交
if (!enableAutoCommit) {
//共有其中方式
factory.getContainerProperties().setAckMode(ContainerProperties.AckMode.BATCH);
}
return factory;
}
}
5、消息订阅
创建一个消费者监听消息类,里面对主题消息监听,这里的测试主题为testone
java
import lombok.extern.slf4j.Slf4j;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
/**
* @Author 码至终章
* @Date 2025/1/8 14:19
* @Version 1.0
*/
@Slf4j
@Component
public class MyKafkaConsumer {
@KafkaListener(id = "my-kafka-consumer",
idIsGroup = false, topics = "topicone",
containerFactory = "myContainerFactory")
public void listen(String message) {
log.info("接收到主题消息,消息内容:{}", message);
}
}
6、生产者发送消息
为了方便调用测试,这里在controller编写一个方法发送消息
java
@RestController
@Slf4j
public class TestController {
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@GetMapping ("/sendMessage")
public void sendMessage(@RequestParam String message) {
this.kafkaTemplate.send("topicone", message);
}
}
7、测试发送消息
这里简单用postman调用接口发送一条消息
从idea的程序控制台可以看到消费者监听可以正常接收到消息