RIP协议在简单网络架构的使用

目录

注意:本文的配置为上文《复杂园区网基本分支的构建》拓展,主要记录rip协议在简单网络架构的使用。

RIP(Routing Information Protocol,路由信息协议)是一种基于距离向量算法的内部网关协议(IGP),用于在局域网或广域网中交换路由信息。

基本概念

  • 距离向量算法:RIP使用距离向量算法来计算到达目的地的最佳路径。每个路由器维护一个路由表,记录到达每个目的地的距离和下一跳路由器。距离通常以跳数(hop count)来表示。
  • 跳数(Hop Count):RIP使用跳数作为度量标准,跳数表示从源到目的地之间经过的路由器数量。RIP协议的最大跳数限制为15跳,超过15跳的网络被视为不可达。

路由更新机制

  • 定期广播:RIP路由器每隔30秒向相邻路由器广播自己的路由表信息。这种定期广播机制确保网络中的路由信息能够及时更新。
  • 触发更新:当路由器的路由表发生变化时(如发现更优路径或路径失效),会立即向相邻路由器发送触发更新,以快速传播路由变化信息。
  • 水平分割(Split Horizon):为避免路由环路,RIP采用水平分割技术。一个路由器不会向其接收路由信息的接口发送相同的路由信息。
  • 毒性逆转(Poison Reverse):当路由器从某个接口接收到路由信息后,会将该路由的跳数设置为无穷大(通常为16),再从该接口发送出去,以防止路由环路。
  • 计时器
    • 路由超时计时器:如果在180秒内未收到某个路由的更新信息,该路由将被标记为不可达。
    • 垃圾收集计时器:被标记为不可达的路由会在300秒后从路由表中删除。

特点与局限性

  • 优点
    • 实现简单:RIP协议结构简单,易于实现和维护。
    • 适合小型网络:对于小型网络或拓扑结构相对稳定的网络,RIP能够有效工作。
  • 缺点
    • 收敛速度慢:由于定期广播和跳数限制,RIP在大型网络或拓扑变化频繁的网络中收敛速度较慢。
    • 路径选择有限:最大跳数限制为15跳,限制了RIP在大型网络中的应用。
    • 路由环路风险:在复杂网络中,RIP容易产生路由环路,尽管有水平分割和毒性逆转等机制来减少环路风险,但无法完全避免。

RIP协议适用于小型、稳定的网络环境,对于大型或拓扑变化频繁的网络,通常会选择其他更先进的路由协议,如OSPF(开放最短路径优先)或EIGRP(增强内部网关路由协议)等。

场景模拟

网络拓扑

配置新加的接口

bash 复制代码
<R-1>system-view 
Enter system view, return user view with Ctrl+Z.
[R-1]interface GigabitEthernet 0/0/3
[R-1-GigabitEthernet0/0/3]ip address 10.0.0.9 30
[R-1-GigabitEthernet0/0/3]quit
[R-1]quit
<R-1>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 17.
Save the configuration successfully.
<R-1>
<R-1>
bash 复制代码
<R-3>system-view 
Enter system view, return user view with Ctrl+Z.
[R-3]interface GigabitEthernet 0/0/3
[R-3-GigabitEthernet0/0/3]ip address 10.0.0.10 30
[R-3-GigabitEthernet0/0/3]quit
[R-3]quit
<R-3>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 17.
Save the configuration successfully.
<R-3>

配置rip并测试

bash 复制代码
<RS-1>sys	
<RS-1>system-view 
Enter system view, return user view with Ctrl+Z.
[RS-1]rip 1
[RS-1-rip-1]version 2
[RS-1-rip-1]network 192.168.100.0
[RS-1-rip-1]network 192.168.101.0
[RS-1-rip-1]network 10.0.0.0
[RS-1-rip-1]quit
[RS-1]quit
<RS-1>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 0.
Save the configuration successfully.
<RS-1>
bash 复制代码
<RS-2>system-view 
Enter system view, return user view with Ctrl+Z.
[RS-2]rip 1
[RS-2-rip-1]version 2	
[RS-2-rip-1]network 192.168.102.0
[RS-2-rip-1]network 192.168.103.0
[RS-2-rip-1]network 10.0.0.0
[RS-2-rip-1]quit
[RS-2]quit
<RS-2>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 0.
Save the configuration successfully.
<RS-2>
bash 复制代码
<RS-3>system-view 
Enter system view, return user view with Ctrl+Z.
[RS-3]rip 1
[RS-3-rip-1]version 2
[RS-3-rip-1]network 192.168.104.0
[RS-3-rip-1]network 192.168.105.0
[RS-3-rip-1]network 10.0.0.0
[RS-3-rip-1]quit
[RS-3]quit
<RS-3>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 0.
Save the configuration successfully.
<RS-3>
bash 复制代码
<RS-4>system-view 
Enter system view, return user view with Ctrl+Z.
[RS-4]rip 1
[RS-4-rip-1]version 2
[RS-4-rip-1]network 192.168.106.0
[RS-4-rip-1]network 192.168.107.0
[RS-4-rip-1]network 10.0.0.0
[RS-4-rip-1]quit
[RS-4]quit
<RS-4>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 0.
Save the configuration successfully.
<RS-4>
bash 复制代码
<R-1>system-view 
Enter system view, return user view with Ctrl+Z.
[R-1]rip 1
[R-1-rip-1]version 2
[R-1-rip-1]network 10.0.0.0
[R-1-rip-1]quit
[R-1]quit
<R-1>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 17.
Save the configuration successfully.
<R-1>
bash 复制代码
<R-2>system-view 
Enter system view, return user view with Ctrl+Z.
[R-2]rip 1
[R-2-rip-1]version 2
[R-2-rip-1]network 10.0.0.0
[R-2-rip-1]quit
[R-2]quit
<R-2>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 17.
Save the configuration successfully.
<R-2>
bash 复制代码
<R-3>system-view 
Enter system view, return user view with Ctrl+Z.
[R-3]rip 1	
[R-3-rip-1]version 2
[R-3-rip-1]network 10.0.0.0
[R-3-rip-1]quit
[R-3]quit
<R-3>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 17.
Save the configuration successfully.
<R-3>

查看R-1路由表,已经可以通过动态路由协议RIP获取到达非直连网络路由,其中如图,优先级为100,度量值为2,到达目标网络需要2个路由设备。

192.168.104.0/24 RIP 100 2 D 10.0.0.10 GigabitEthernet 0/0/3

192.168.105.0/24 RIP 100 2 D 10.0.0.10 GigabitEthernet 0/0/3

192.168.106.0/24 RIP 100 2 D 10.0.0.10 GigabitEthernet 0/0/3

192.168.107.0/24 RIP 100 2 D 10.0.0.10 GigabitEthernet 0/0/3

最后测试通信情况,每两台主机之间能够互相通信。

相关推荐
Fireworkitte18 分钟前
gRPC和http长轮询
网络·网络协议·http
LuLaLuLaLeLLLLLL1 小时前
RPC 框架学习笔记
网络·网络协议·rpc
冰橙子id2 小时前
linux-远程访问管理(sshd,scp,sftp)
linux·网络·ssh
brzhang4 小时前
我操,终于有人把 AI 大佬们 PUA 程序员的套路给讲明白了!
前端·后端·架构
saynaihe5 小时前
ubuntu 22.04 anaconda comfyui安装
linux·运维·服务器·ubuntu
橘子在努力5 小时前
【橘子分布式】Thrift RPC(理论篇)
分布式·网络协议·rpc
小蜜蜂爱编程5 小时前
ubuntu透网方案
运维·服务器·ubuntu
liulilittle6 小时前
.NET ExpandoObject 技术原理解析
开发语言·网络·windows·c#·.net·net·动态编程
头发那是一根不剩了6 小时前
nginx:SSL_CTX_use_PrivateKey failed
运维·服务器
委婉待续6 小时前
计算机网络通信的相关知识总结
开发语言·网络